![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Решение и исследование систем линейных уравнений методом Гаусса. Этот метод решения систем линейных уравнений пригоден для решения систем с любым числом уравнений и неизвестных.
Суть метода Гаусса заключается в преобразовании заданной системы уравнений с помощью элементарных преобразований в эквивалентную систему ступенчатого треугольного вида.
Полученная система содержит все неизвестные в первом уравнении. Во втором уравнении отсутствует первое неизвестное, в третьем уравнении отсутствуют первое и второе неизвестные и т. д.
Если система совместна и определена (единственное решение), то последнее уравнение содержит одно неизвестное. Найдя последнее неизвестное, из предыдущего уравнения находим еще одно - предпоследнее. Подставляя полученные величины неизвестных, мы последовательно найдем решение системы.
Элементарными преобразованиями системы линейных уравнений, используемыми для приведения системы к треугольному виду, являются следующие преобразования:
- перестановка местами двух уравнений;
- умножение обеих частей одного из уравнений на любое число, отличное от нуля;
- прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число.
Элементарные преобразования переводят данную систему линейных алгебраических уравнений в эквивалентную систему.
Две системы называются эквивалентными, если всякое решение первой системы является решением другой системы и наоборот.
Дата публикования: 2015-01-26; Прочитано: 151 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!