Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Способы посадки



Завершением космичес­кого полета считается посадка на планету. К настоящему времени только три страны научились возвращать на Землю космические аппараты: Россия, США и Китай.

Для планет с атмосферой (рис. 3.19) проблема посадки сводится главным образом к решению трех задач: преодоление высокого уровня перегрузок; защита от аэродинамического нагрева; управление временем достижения планеты и координатами точки посадки.

Рис. 3,19. Схема спуска КА с орбиты и посадки на планету с атмосферой:

N - включение тормозного двигателя; А - сход КА с орбиты; М - отделение СА от орбитального КА; В - вход СА в плотные слои атмосферы; С - начало работы пара­шютной системы посадки; D - посадка на поверхность планеты;

1 – баллистичес­кий спуск; 2 – планирующий спуск

При посадке на планету без атмосферы (рис. 3.20, а, б) снимается проблема защиты от аэродинамического нагрева.

КА, находящийся на орбите искусственного спутника планеты или приближающийся к планете с атмосферой для совершения посадки на нее обладает большим запасом кинетической энергии, связанной со скоростью КА и его массой, и потенциальной энергии, обусловленной положением КА относительно поверхности планеты.

Рис. 3.20. Спуск и посадка КА на планету без атмосферы:

а - спуск на планету с предварительным выходом на орбиту ожидания;

б - мягкая посадка КА с тормозным двигателем и посадочным устройством;

I - гиперболичес­кая траектория подлета к планете; II — орбитальная траектория;

III — траектория спуска с орбиты; 1, 2, 3 — активные участки полета при торможении и мягкой по­садке

При входе в плотные слои атмосферы перед носовой частью СА возникает ударная волна, нагревающая газ до высокой температуры. По мере погружения в атмосферу СА тормозится, скорость его уменьшается, а раскаленный газ все больше нагревает СА. Кинетическая энергия аппарата превращается в тепло. При этом большая часть энергии отводится в окружающее пространство двумя путями: большая часть тепла отводится в окружающую атмосферу из-за действия сильных ударных волн и за счет теплоизлучения с нагретой поверхности СА.

Наиболее сильные ударные волны возникают при затупленной форме носовой части, вот почему для СА применяют затупленные формы, а не заостренные, характерные для полета при малых скоростях.

С ростом скоростей и температур большая часть тепла передается к аппарату не за счет трения о сжатые слои атмосферы, а за счет излучения и конвекции от ударной волны.

Для отвода тепла от поверхности СА применяются следующие методы:

– поглощения тепла теплозащитным слоем;

– радиационного охлаждения поверхности;

– применения уносимых покрытий.

До входа в плотные слои атмосферы траектория КА подчиняется законам небесной механики. В атмосфере на аппарат помимо гравитаци­онных сил действуют аэродинамические и центробежные силы, изменяющие форму траектории его движения. Сила притяжения направлена к центру планеты, сила аэродинамического сопротивления по направлению, противоположному вектору скорости, центробежная и подъемная силы – перпендикулярно направлению движения СА. Сила аэродинамического сопротивления уменьшает скорость аппарата, в то время как центробежная и подъемная силы сообщают ему ускорения в направлении, перпендикулярном его движению.

Характер траектории спуска в атмосфере определяется в основном его аэродинамическими характеристиками. При отсутствии подъемной силы у СА траектория его движения в атмосфере называется баллистичес­кой (траектории спуска СА космических кораблей серий «Восток» и «Восход»), а при наличии подъемной силы – либо планирующей (СА КК Союз и «Аполлон», а также «Спейс Шаттл»), либо рикошети­рующей (СА КК Союз и «Аполлон»). Движение по планетоцентрической орбите не предъявляет высоких требований к точности наведения при входе в атмосферу, поскольку путем включения двигательной установки для торможения или ускорения сравнительно легко скорректировать траекторию. При входе в атмосферу со скоростью, превышающей первую космическую, ошибки в расчетах наиболее опасны, так как слишком крутой спуск может привести к разрушению СА, а слишком пологий – к удалению от планеты.

При баллистическом спуске вектор равнодействующей аэродинамических сил направлен прямо противоположно вектору скорости движения аппарата. Спуск по баллистической траектории не требует управления. Недостатком этого способа является большая крутизна траектории, и, как следствие, вхождение аппарата в плотные слои атмосферы на большой скорости, что приводит к сильному аэродинамическому нагреву аппарата и к перегрузкам, иногда превышающим 10g – близким к предельно-допустимым значениям для человека.

При аэродинамическом спуске внешний корпус аппарата имеет, как правило, коническую форму, причём ось конуса составляет некоторый угол (угол атаки) с вектором скорости аппарата, за счёт чего равнодействующая аэродинамических сил имеет составляющую, перпендикулярную к вектору скорости аппарата – подъёмную силу. Благодаря подъёмной силе, аппарат снижается медленнее, траектория его спуска становится более пологой, при этом участок торможения растягивается и по длине и во времени, а максимальные перегрузки и интенсивность аэродинамического нагрева могут быть снижены в несколько раз, по сравнению с баллистическим торможением, что делает планирующий спуск для людей более безопасным и комфортным.

Угол атаки при спуске меняется в зависимости от скорости полёта и текущей плотности воздуха. В верхних, разреженных слоях атмосферы он может достигать 40°, постепенно уменьшаясь со снижением аппарата. Это требует наличия на СА системы управления планирующим полётом, что усложняет и утяжеляет аппарат, и в случаях, когда он служит для спуска только аппаратуры, которая способна выдерживать более высокие перегрузки, чем человек, используется, как правило, баллистическое торможение.

Орбитальная ступень «Спейс Шаттл», при возврате на Землю выполняющий функцию спускаемого аппарата, планирует на всём участке спуска от входа в атмосферу до касания шасси посадочной полосы, после чего выпускается тормозной парашют.

После того, как на участке аэродинамического торможения скорость аппарата снизится до дозвуковой далее спуск СА может осуществляться с помощью парашютов. Парашют в плотной атмосфере гасит скорость аппарата почти до нуля и обеспечивает мягкую посадку его на поверхность планеты.

В разреженной атмосфере Марса парашюты менее эффективны, поэтому на заключительном участке спуска парашют отцепляется и включаются посадочные ракетные двигатели.

Спускаемые пилотируемые аппараты космических кораблей серии Союз ТМА-01М, предназначенные для приземления на сушу, также имеют твёрдотопливные тормозные двигатели, включающиеся за несколько секунд до касания земли, чтобы обеспечить более безопасную и комфортную посадку.

Спускаемый аппарат станции Венера-13 после спуска на парашюте до высоты 47 км сбросил его и возобновил аэродинамическое торможение. Такая программа спуска была продиктована особенностями атмосферы Венеры, нижние слои которой очень плотные и горячие (до 500° С), и парашюты из ткани не выдержали бы таких условий.

Следует отметить, что в некоторых проектах космических кораблей многоразового использования (в частности, одноступенчатых вертикального взлета и посадки, например, Delta Clipper) предполагается на конечном этапе спуска, после аэродинамического торможения в атмосфере, также производить беспарашютную моторную посадку на ракетных двигателях. Конструктивно спускаемые аппараты могут существенно отличаться друг от друга в зависимости от характера полезной нагрузки и от физических условий на поверхности планеты, на которую производится посадка.

При посадке на планету без атмосферы снимается проблема аэродинамического нагрева, но для осуществления посадки гашение скорости осуществляется с помощью тормозной двигательной установки, которая должна работать в режиме программируемой тяги, а масса топлива при этом может значительно превышать массу самого СА.





Дата публикования: 2015-01-04; Прочитано: 716 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...