![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
В общем случае движение точки происходит с переменной по величине и по направлению скоростью. Желая охарактеризовать изменение скорости, вводят меру быстроты этого изменения со временем — ускорение, которое должно учитывать векторное (геометрическое) изменение скорости, т. е. изменение ее по величине и по направлению. Для этого рассмотрим (как и для скорости) два значения скорости в моменты времени , и определим ускорение как
(2.6)
Если радиус – вектор представлен разложением по ортам декартовой системы координат
, тогда
и
.
Модуль ускорения равен
.
Считая координатами точки N – конца вектора
, можно рассматривать вектор скорости, согласно (2.5), как скорость конца вектора
, а считая
- координатами точки М – конца вектора
, можно рассматривать вектор ускорения, как скорость конца вектора
. Применяя полученные выражения единичных вектором осей натурального триэдра траектории, найдем составляющие вектора ускорения по этим осям. Вспомнив, что вектор ускорения есть производная по времени от вектора скорости, получим
,
но , откуда следует
(2.7)
Равенство (2.7) представляет собой разложение вектора ускорения по осям натурального триэдра. Обозначив коэффициенты при единичных векторах, и записав проекции ускорения на оси натурального триэдра, соответственно через
будем иметь:
причем из (2.7) следует, что
Последнее равенство говорит о том, что вектор ускорения перпендикулярен к бинормали, т. е. ускорение лежит в соприкасающейся плоскости. Первое слагаемое в разложении (2.7) - дает касательную (тангенциальную) составляющую ускорения, второе
- нормальную составляющую ускорения. Иногда для кратко
сти их называют просто касательным и нормальным ускорением. В случае ускоренного движения знаки
и
одинаковы, в случае замедленного движения - противоположны, т. е. при ускоренном движении касательное ускорение направлено в ту же сторону, что и вектор скорости, а при замедленном движении имеет направление, противоположное скорости (рис. 23).
Итак, вектор ускорения в криволинейном движении может быть представлен как геометрическая сумма двух ускорений: касательного и нормального. Величина ускорения может быть представлена так:
Рассмотрим два частных случая:
а) Случай равномерного движения; величина скорости постоянна, так что , и величина ускорения равна в этом случае
б) Случай прямолинейного движения; кривизна прямой линии равна нулю и, следовательно, , и
.
Из сопоставления этих двух случаев следует, что в равномерном прямолинейном движении ускорение равно нулю.
Отметим, что не следует смешивать и
так как первое выражение определяет величину полного ускорения, а второе - абсолютное значение лишь одной его касательной составляющей. На различие этих величин указывалось уже выше (формула (2.2)). Разложение ускорения на касательную и нормальную части имеет простое кинематическое значение. Вектор ускорения, определяющий быстроту изменения вектора скорости по величине и направлению, представляется суммой касательного ускорения, характеризующего изменение величины скорости, и нормального, характеризующего изменение ее по направлению.
Дата публикования: 2015-01-14; Прочитано: 288 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!