![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Прежде всего несколько разовьем ранее сказанное о вектор-функции и ее производной. Пусть
- непрерывная вектор-функция скалярного аргумента u, геометрически изображаемая своим годографом, т. е. траекторией конца N векторов
при непрерывно изменяющихся значениях аргумента u, и начало этих векторов откладывается от некоторого полюса О (Рис 19). Производная от вектор – функции
по скалярному аргументу u, определяется как предел
(2.1)
и представляет вектор, имеющий направление касательной к годографу, проведенной в сторону, соответствующую возрастанию аргумента u. Вектор
характеризует быстроту изменения по величине и направлению вектора
с изменением аргумента u.
Величину или модуль производной будем обозначать через . Модуль производной вектора не равен значению производной его модуля.
(2.2)
При дифференцировании векторов сохраняются те же правила, что и при дифференцировании функций:
производная геометрической суммы (разности) вектор–функции равна геометрической сумме (разности) производных. Точно так же сохраняется и правило дифференцирования произведения скалярной функции X (u) на вектор :
Понятие вектор – функции и её производной облегчают рассмотрение основных геометрических свойств траектории, необходимых для развития представления о скорости и ускорения точки. Рассмотрим некоторую кривую, лежащую (вообще говоря) не в одной плоскости. Возьмём на этой кривой три точки М1, М2 и М. Проведём через эти три точки плоскость (предполагается, что три точки не лежат на одной прямой). Устремим точки М1 и М2 к точке М. Проведённая плоскость при этом будет каким – то образом поворачиваться и займёт предельное положения, когда все три точки сольются. Это предельное положение назовём соприкасающейся плоскостью (СП), в которой проведём касательную к кривой в точке М. Орт касательной в точке М обозначим . Проведем в точке М плоскость перпендикулярную к орту
, эту плоскость назовём нормальной плоскостью (НП) кривой. Любая прямая, проведенная в этой плоскости через точку М, будет перпендикулярна к
, т. е. будет нормалью кривой; линия пересечения нормальной и соприкасающейся плоскостей определяет главную нормаль кривой. Иными словами, главной нормалью называется нормаль, лежащая в соприкасающейся плоскости. Нормаль, перпендикулярная к главной нормали, называется бинормалью кривой. Если, в частности, кривая — плоская, то соприкасающейся плоскостью будет плоскость, в которой расположена кривая, а главной нормалью — нормаль кривой, лежащая в этой плоскости.
Совокупность трех взаимно перпендикулярных осей: 1) касательной, направленной в сторону возрастания дуги, 2) главной нормали, направленной в сторону вогнутости кривой, и 3) бинормали, перпендикулярной к касательной и главной нормали образует так называемый натуральней триэдр кривой.
Единичные векторы этих осей обозначим соответственно через . Найдем выражения этих трех единичных векторов натурального триэдра через вектор-радиус точки на кривой, заданный как вектор-функция дуги:
. Найдем прежде всего
. По определению векторной производной вектор
направлен по касательной к годографу вектора
в сторону возрастания дуги S. С другой стороны, численная величина производной равна
. Таким образом, векторная производная представляет искомый единичный вектор касательной
(2.3)
Для определения единичного вектора главной нормали
обратимся к рис. 20 и рис. 21.
Таким образом, имеем следующее выражение орта главной нормали . Или в более привычной записи
(2.4)
Дата публикования: 2015-01-14; Прочитано: 1513 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!