Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Колонки нейронов и сознание



Современные специалисты в области нервной системы ведут активные поиски организационного принципа, который обеспечил бы подходы к явлению сознания, доступные для экспериментальной проверки. Такой организационный принцип был выдвинут американским физиологом В. Маунткаслом. Этот принцип базируется на трех отправных точках, связанных с недавними открытиями, о которых уже шла речь в главе "i.

Во-первых, кора головного мозга состоит из сложных многоклеточных ансамблей, основная единица которых образована примерно сотней вертикально связанных нейронов всех слоев коры. Можно скачать, что в эти мини-колонки входят:

1) нейроны, которые получают входные сигналы в основном от подкорковых структур - например, от специфических сенсорных и двигательных ядер таламуса;

2) нейроны, получающие входные сигналы от других областей коры;

3) все нейроны локальных сетей, образующие вертикальные клеточные колонки;

4) клетки, передающие выходные сигналы от колонки назад к таламусу, другим областям коры, а иногда к клеткам лимбическои системы.

Во-вторых, по мнению Маунткасла, несколько таких сходных в своей основе простых вертикальных ансамблей могут объединяться с помощью межколоночных связей в более крупную единицу, перерабатывающую информацию, --модуль, пли модулярную колонку. Хотя плотность клеток в слоях разных частей коры несколько различна, общая структура и функции таких модулярных колонок однотипны. Эти колонки различаются лишь по источнику получаемых ими входных сигналов и по мишеням, которым адресуются их выходные сигналы.

В-третьих, Маунткасл считает, что модули не только получают и перерабатывают информацию. Они совместно функционируют в составе обширных петель, по которым информация, выходя из колонок, передается другим кортикальным и субкортикальным мишеням, а затем возвращается обратно в кору. Эти петли обеспечивают упорядоченное повторное поступление информации в кортикальные ансамбли. По подсчетам Маунткасла, у человека в такой организационной структуре участвуют миллиарды нейронов, образующих колонки в коре большою мозга.

Какова, однако, связь между этими деталями строения и сознанием? Попытаемся найти эту связь с помощью упрощенных рассуждений (на большее пока рассчитывать не приходится). Каждый модуль действует как единица, перерабатывающая информацию. Модули группируются в более крупные совокупности, которые мы называем первичной зрительной, слуховой или двигательной корой в зависимости от того, откуда в основном получает информацию данная совокупность. По поскольку переработка информации ведется в параллельных каналах, каждая из этих совокупностей, выполняющих одну главную функцию, содержит также более мелкие подгруппы вертикальных единиц, каждая из которых связана с особыми подгруппами других совокупностей, выполняющих в первую очередь иные функции. Эти взаимосвязанные подгруппы представляют собой специфическим образом соединенные части сети, которая может широко разветвляться во всей коре.

Такого рода «распределенные» системы обладали бы двумя важными особенностями.

Во-первых, любая подгруппа модулей может входить в состав различных «распределенных» систем; каких именно — это записит oт получаемой в данный момент информации.

Во-вторых, и это важнее всего, осуществление самой сложной функции — способности прийти к какой-то форме абстрактного заключения «о себе и мире» —- может быть результатом деятельности всей «распределенной» системы в целом. Таким образом, небольшие повреждения не смогут уничтожить этот результат в целом, а могут лишь ухудшить его. Процесс восстановления после более обширных повреждений связан со способностью сохранившихся подгрупп в уцелевших совокупностях к новому объединению.

Поскольку «распределенные» системы имеют дело не только с первичными, но и с повторными входными и выходными сигналами, кора во всякое время располагает как информацией внутреннего происхождения (повторной), так и текущей информацией о внешнем мире. Этот непрерывный пересмотр воспринимаемых образов наряду с функциями сравнения или тестирования реальности позволяет коре объединить образ, сформированный в ближайшем прошлом, с текущим образом внешнего мира. Сравнение внутренних показаний с текущей информацией об окружающем мире и составляет предполагаемую основу сознания. В настоящее время ученые пытаются найти способы проверки пой фундаментальной концепции.

№79.

Ретикулярная формация (formatio reticularis; лат. reticulum сеть; синоним ретикулярная субстанция) --•- комплекс клеточных и ядерных образований, занимающих центральное положение в стволе головного мозга и в верхнем отделе спинного мозга. Большое количество нервных волокон, пронизывающих ретикулярную формацию в различных направлениях, придает ей вид своеобразной сеточки, что послужило основанием для названия этой структуры.

Вся ретикулярная формация может быть подразделена на каудальный, или мезэнцефалический, и ростральный, или таламический, отделы. Каудальный отдел ретикулярной формации определяет диффузную, неспецифическую систему влияний на сравнительно обширные отделы и зоны головного мозга, тогда как ростральный отдел ретикулярной формации - специфическую систему, оказывающую относительно локальные влияния на определенные зоны коры больших полушарий. Диффузность (или специфичность) ретикулярной формации проявляется и в характере модальности нервно-импульсных влияний. Таким образом, ретикулярная формация — это универсальная система, обусловливающая функциональное состояние всех отделов головного мозга и влияющая на все виды нервной деятельности, т.е. ее можно представить как «мозг в мозге».

Несмотря на многообразие форм влияния ретикулярной формации на деятельность нервной системы, можно выделить два основных направления воздействия ретикулярной формации: ретикулоспинальные влияния и ретикулокортикальные взаимоотношения.

Ретикулоспинальные влияния носят облегчающий или тормозной характер и играют важную роль в координации простых и сложных движений, в реализации влияний психической сферы на осуществление сложной двигательной поведенческой деятельности человека.

Ретикулокортикальные взаимоотношения разноплановы. Из клинической практики известно, что при поражении определенных отделов ствола головного мозга наблюдаются снижение двигательной активности, сонливость, ареактивность, нарушение смены состояний сна и бодрствования, подавление психической деятельности, т.е. снижение активирующих влияний на процессы корковой интеграции. Показано также, что раздражение определенных участков ретикулярной формации вызывает в обширных зонах коры больших полушарий реакцию активации. Эти данные позволили сформулировать концепцию о диффузной, восходящей, активирующей системе ретикулярной формации. В основе активирующего влияния ретикулярной формации на кору больших полушарий лежит афферентная импульсация от сенсорных систем организма, а также гуморальные влияния (норадреналин, тироксин, регуляторные пептиды и другие специфические физиологически активные вещества, взаимодействующие с нейронами ретикулярной формации).

Долгое время влияние коры на ретикулярную формацию оставалось неизученным, что привело к чрезмерному подчеркиванию влияний ретикулярной формации на кору больших полушарий. Поэтому важным фактором стало установление связей коры больших полушарий с нейронами ретикулярной формации, оказывающими «сдерживающее» модулирующее влияние на функциональное состояние формации.

Нарушения функции ретикулярной формации развиваются главным образом вследствие поражений ее ядер или афферентных и эфферентных связей на различных уровнях, проявляются в виде расстройств движения, нарушений сна, сознания, вегетативной дисфункции.

Нисходящее влияние ретикулярной формации ствола головного мозга на спинной мозг

Нисходящее влияние ретикулярной формации ствола головного мозга на спинной мозг осуществляется через реткулоспинальный тракт. Если раздражается ретикулярная формация промежуточного мозга - преобладает тормозное влияние ретикулярной формации. Тормозное влияние происходит через вставочные тормозные нейроны (клетки Реншоу). При раздражении ретикулярной формации продолговатого мозга происходит повышение активности мотонейронов спинною мозга - нисходящее активирующее влияние. Нисходящее влияние ретикулярной формации выражено по-разному в отношении центров противоположных рефлексов. Ретикулярная формация регулирует двигательную активность совместно с мозжечком и нейронами среднего мозга (распределение тонуса). Также ретикулярная формация регулирует вегетативные функции (в составе дыхательного и сосудодвигателыюго центров).

Восходящее влияние ретикулярной формации на кору головного мозга

Существует 2 вида восходящего влияния ретикулярной формации на кору головного мозга.

Активизирующее влияние ретикулярной формации очень выражено. Через ретикулярную формацию проходит неспецифический путь передачи импульсов в кору головного мозга. Импульсы поступают к ретикулярной формации и теряют спою специфичность. От ретикулярной формации импульсы веерообразно расходятся ко всей коре головного мозга. Они стимулируют обменные процессы в коре головного мозга и повышают возбудимость нейронов коры. При удалении активирующего влияния животные засыпают.

Тормозное влияние - мало изучено. При раздражении гигантоклеточных ядер ретикулярной формации продолговатого мозга наблюдается торможение функции коры головного мозга (сон).

№80.

Промежуточный мозг. Главными образованиями промежуточного мозга являются зрительные бугры и

подбугровая область.

Зрительный бугор (thalainus opticus) является своеобразной сенсорной промежуточной станцией - областью переключения всех афферентных путей, идущих к коре больших полушарий. Бугор является средоточием всех рецептивных нейронов ЦНС, выполняя, таким образом, роль высшего подкоркового центра всей чувствительности тела. Нервные связи бугра с соседними областями головного мозга отличаются исключительным обилием и функциональным многообразием.

Функционально все ядра таламуса делятся на специфические и неспецифические. Волокна от специфических ядер образуют синапсы па ограниченном числе зон коры, а волокна от неспецифических ядер таламуса дают большое количество разветвлений в разных участках коры больших полушарий и вовлекают в процесс возбуждения большое количество корковых нейронов. Специфические ядра имеют прямые связи с определенными участками коры, неспецифические - через подкорковые ядра связаны с разными участками. К специфическим ядрам таламуса относятся латеральное коленчатое тело (место переключения зрительных сигналов), медиальное коленчатое тело (место переключения слуховых сигналов), заднее вентральное ядро (место переключения сигналов с рецепторов кожи, туловища, проприорецепторов и т.п.), заднее медиальное ядро (висцерорецепция), передние ядра таламуса (вкусовая и обонятельная рецепция). Области представительства отдельных частей тела и внутренних органов перекрываются, отсюда - отраженные боли, зоны Геда и т.п. Кроме вышеперечисленных, к специфическим ядрам таламуса относится большая группа ассоциативных ядер, которые получают импульсы от переключающих ядер таламуса, и передают их в кору мозга и в другие отделы ЦНС.

Неспецпфические ядра таламуса многие ученые рассматривают как диэнцефальную часть ретикулярной формации мозгового ствола, однако морфологические и функциональные свойства этой части мозга не похожи на ретикулярные ядра. Джаспер показал, что неспецифическая система таламуса принимает участие в быстрой и кратковременной активации коры в противоположность медленной и длительной активации, осуществляемой ретикулярной формацией мозга. Кроме того, РФ среднего мозга, о работе которой мы будем говорить более подробно на следующей лекции, выполняет функции поддержания тонуса всей коры, а неспецифические ядра таламуса активируют лишь те ее структуры, которые принимают участие в осуществлении конкретных рефлекторных реакций (организация процесса внимания).

Таламус имеет большое значение и как центр формирования ощущений, в частности - как высший центр формирования болевой чувствительности. Это доказывается опытами с раздражением коры и ядер таламуса, клиникой поражений таламуса.

Вместе с тем, зрительные бугры еще являются и центрами непроизвольных выразительных движений, центром эмоциональных проявлений. Разрушение таламуса приводит к выпадению чувствительности и выпадению сокращений мускулатуры лица, непроизвольно сокращающейся при эмоциях - маска страха, гнева, плача п т.п.. Произвольное управление лицевой мускулатурой сохраняется. Если же таламус сохранен, а нарушена моторная зона коры, то наоборот, непроизвольное выражение эмоций остается, произвольное же выпадает.

Подбугровая область (гипоталамус). В состав подбугровой области входят следующие основные ядра: серый бугор, тело Льюиса, nucleus paravenlricularis, nucleus supraopthicus, corpora mamillaria. Ядра гипоталамической области связаны с ядрами вегетативных нервов среднего, продолговатого и спинного мозга. Волокна, выходящие из надоптпческого ядра, проходят в ножке гипофиза и иннервируют заднюю долю гипофиза. Афферентные влияния к ядрам подбугровой области поступают от зрительных бугров, хвостатого тела, чечевицы, красного ядра, черной субстанции и ядер продолговатого мозга. Помимо этого, к ядрам гипоталамуса подходят волокна от различных отделов коры полушарии.

Характер афферентных и эфферентных путей, связывающих гипоталамус с остальными отделами нервной системы, указывает на то. что он является главным подкорковым центром вегетативной нервной системы, промежуточным звеном, связывающим основные воспринимающие образования НС с вегетативными ганглиями на периферии.

Опыты с раздражением отдельных ядер гипоталамуса, а также опыты с разрушением частей гипоталамуса показали, что он является центральным источником импульсов для осуществления вегетативных реакций. При раздражении серого бугра возникают зрачковые, сосудистые реакции, изменение потоотделения и обмена веществ. Инъекция кошке в область серого бугра солей К, Na вызывает повышение, a Mg и Са - понижение температуры тела. Электрическое раздражение серого бугра и околожелудочкового ядра ведет к повышению сахара в крови, разрушение этих ядер - к понижению. При повреждении сосковидных тел наступают расстройства водно-солевого обмена. Раздражение области льюисова тела вызывает зрачковые и вазомоторные реакции, потоотделение, сокращение гладкой мускулатуры ЖКТ и мочеполовых органов.

Считают, что задние и латеральные ядра гипоталамуса больше связаны с центрами симпатических нервов, ядра передней части - с парасимпатическими центрами.

Существенное значение для водного и солевого обмена имеет связь гипоталамической области с гипофизом. Перерезка нервного пути, идущего от надоптического ядра к задней доле гипофиза, вызывает несахарное мочеизнурение, вследствие того, что в гипофиз перестает поступать антидиуретический гормон. Гипоталамус связан с гипофизом с помощью нейросекреторной системы, при этом нейроны гипоталамуса вырабатывают вещества, которые специфически влияют па гипофиз, а через пего - на обмен веществ в целом.

Кора головного мозга, стимулируя при осуществлении сложно-рефлекторных актов вегетатику организма через посредство гипоталамуса, может оказывать на нее и тормозящее влияние. Показано, что после удаления коры мозга даже незначительное, не вредоносное раздражение вызывает сильнейшую оборонительную реакцию со всем вегетативным комплексом ярости (полосы дыбом, расширение зрачков, повышение АД, уровня сахара в крови и обильное слюнотечение) - так называемая "мнимая ярость". В последние годы приведены факты, показывающие, что влияния, постоянно как бы притормаживающие рефлекторную деятельность ядер гипоталамуса, исходят из филогенетически самых древних отделов коры, (из т.н. лимбнчееких структур мозга, включающих обонятельный мозг, girus piriformis, hyppocampiis, nucleus amygdale, а также участок медиальной поверхностц-коры кпереди от мозолистого тела). Наоборот, при удалении неокортекс, но сохранении указанных долей обонятельного мозга, поведение кошек характеризуется торможением таких рефлексов - на щипок хвоста кошки реагируют мурлыканием и вызвать у них оборонительный рефлекс чрезвычайно трудно.

О роли гипоталамуса в осуществлении вегетативных реакций и участии ею ядер в регуляции обмена веществ мы будем говорить еще раз несколько позже, при рассмотрении вегетативной нервной системы.

№ 81.

Высшая нервная деятельность является деятельностью рефлекторной. Рефлексы делятся на две основные группы: безусловные и условные.

Безусловные рефлексы - это врожденные рефлексы, осуществляющиеся по постоянным, имеющимся от рождения рефлекторным дугам. Безусловные рефлексы обеспечивают приспособление организма лишь в относительно постоянных условиях. Изменчивость их крайне ограниченна. Поэтому для приспособления к непрерывно и резко изменяющимся условиям существования одних безусловных рефлексов недостаточно.

Условные рефлексы не являются врожденными, они образуются в процессе индивидуальной жизни животных и человека на базе безусловных. Безусловные рефлексы могут сочетаться с самыми разнообразными изменениями во внешней или внутренней среде организма, а поэтому на базе одного безусловного рефлекса может быть образовано множество условных рефлексов. Условные рефлексы характеризуются чрезвычайной изменчивостью в зависимости от ситуации и от состояния нервной системы.

Основной метод исследования ВНД - метод условных рефлексов. Наряду с ним для исследования функций высших отделов ЦНС используется и целый ряд других методов - клинический, морфологические, биохимические и гистохимические методы, ЭЭГ, множество методов психологического тестирования.

Механизм образования условного рефлекса. Условный рефлекс образуется при сочетании БР с индифферентным раздражителем. Одновременное возбуждение двух пунктов ЦНС приводит, в конце концов, к возникновению между ними временной связи, благодаря чему индифферентный раздражитель, ранее никогда не связанный с сочетаемым безусловным рефлексом, приобретает способность вызывать этот рефлекс (становится условным раздражителем). Таким образом, в основе физиологического механизма образования УР лежит процесс замыкания временной связи.

Замыкание временной связи происходит полностью в коре, между корковым концом анализатора, воспринимающего условный раздражитель, и корковым представительством безусловного рефлекса.

№ 82.

Кратковременная память Кратковременная память (КП) – первый этап формирования энграммы. Ее существование во времени ограничено, след в КП лабилен, неустойчив, объем информации, одновременно сохраняемой в КП, ограничен. Поэтому более поздние знания вытесняют более ранние

Основные характеристики кратковременной памяти: 1) она является необходимым этапом для перехода следа в долговременную память; 2) содержимое кратковременной памяти быстро угасает, может быть разрушено различными амнестическими воздействиями (электрошок, травма), легко передается в долговременную память; 3) объем кратковременной памяти ограничен. Кратковременная память носит оперативный характер. Она удерживает поступающие из сенсорной системы или долговременной памяти сигналы очень короткое время (обычно несколько секунд). В условиях эксперимента ее можно увеличить до нескольких минут или часов. Это становится возможным, если вслед за информацией, которую испытуемый должен запомнить, по данному сенсорному каналу ничего не поступает (например, после предъявления зрительных стимулов испытуемому закрывают глаза).

Долговременная память (ДП) – второй этап формирования следа памяти, который переводит его в устойчивое состояние. Процесс перехода из КП в ДП называют процессом консолидации памяти. Энграмма, попавшая в ДП, не подвергается разрушающему воздействию амнестических агентов, как КП, устойчива, время хранения, так же, как и объем информации, сохраняемой в ДП, ее не ограничено.

№83.

Динамическим стереотип - выработанная строго зафиксированная система условных и безусловных рефлексов, которые последовательно чередуются. Для формирования динамического стереотипа необходимо наличие внешнего стереотипа. т. е. определенной последовательности действия условных и безусловных раздражи гелей. В ответ на них в центральной нервной системе последовательно возникают очаги возбуждения, которые обеспечивают возникновение

динамического стереотипа.

Динамическим стереотип - определенная последовательность действий на раздражение из внешней среды. Значение:

1. за счет динамического стереотипа облегчается возникновение процессов возбуждения и торможения в центральной нервной системе, т. к. нейроны находятся в состоянии готовности;

2. автоматическое выполнение различных действий.

№ 84.

Особенности ВНД определяются характером взаимодействия, соотношением основных корковых процессов - возбуждения и торможения. Поэтому в основу классификации типов ВНД положены различия основных свойств этих нервных процессов. Такими свойствами являются:

1. Сила нервных процессов.

2. Уравновешенность нервных процессов.

3. Подвижность нервных процессов.

И.П. Павлов, выделил 4, наиболее резко бросающихся в глаза типа ВНД:

1 - сильный неуравновешенный (с резким преобладанием возбуждения);

2 - сильный неуравновешенный подвижный;





Дата публикования: 2014-12-30; Прочитано: 689 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...