![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Функція віконних перетворень (2.8) може бути, переведена в тривимірний варіант із незалежними змінними й за часом, і по частоті:
S(t,w) = s(t-t) w(t) exp(-jwt) dt. (2.9)
На рисунку, наведеного у додатку 2, наведений приклад обчислення й представлення (модуль правої частини головного діапазону спектра) результатів тривимірної спектрограми при дискретному задані вхідного сигналу sq(n). Сигнал являє собою суму трьох послідовних радіоімпульсів з різними частотами без пауз, з відношенням сигнал/шум, близьким до 1. Віконна функція wi задана в однобічному варіанті з ефективною шириною вікна b @ 34 і повним розміром М =50. Установлений для результатів крок по частоті Δω = 0.1 трохи вище фактичної розв'язної здатності 2π/M = 0.126.
Для забезпечення роботи віконної функції по всьому інтервалі сигналу задавалися початкові й кінцеві умови обчислень (продовження на M крапок обох кінців сигналу нульовими значеннями).
Як видно за результатами обчислень, віконне перетворення дозволяє досить точно локалізувати інформативні особливості сигналу за часом і по частоті[13].
Використання дискретного вейвлет-перетворення дозволяє провести доведення багатьох положень теорії вейвлетів, пов'язаних з повнотою й ортогональністю базису, збіжністю рядів і т.д. Доказовість цих положень необхідна, наприклад, при стиску інформації або в завданнях чисельного моделювання, тобто у випадках, коли важливо провести розклад з мінімальним числом незалежних коефіцієнтів вейвлет-перетворення й мати точну формулу зворотного перетворення. Використання безперервного вейвлет-перетворення для аналізу сигналів більш зручно, а його деяка надмірність, пов'язана з безперервною зміною масштабного коефіцієнта а й параметра зрушення b, стає тут позитивною якістю, тому що дозволяє більш повно й чітко представити й проаналізувати інформацію, що міститься у вихідних даних. Зокрема, стає можливим проведення локалізації й класифікації особливих крапок і обчислення різних фрактальних характеристик сигналу, а також виконання частотно-часового аналізу нестаціонарних сигналів. Наприклад, у таких сигналів, як мовний сигнал, спектр радикально міняється в часі, а характер цих змін являє собою дуже важливу інформацію при розпізнаванні мови.
На основі вейвлетів створюються й такі елементи, як високочастотний і низькочастотний вейвлет-фільтри, за допомогою яких відбувається фільтрація сигналу по алгоритму Малла (рисунок 2.6). При цьому для збільшення дозволу вейвлет-фільтрів по частоті використається простий і досить ефективний прийом. Опишемо його для ортогонального випадку[2].
Рис. 2.6 – Розклад по вейвлет-пакетам.
Сімейства вейвлетів у тимчасовій або частотній області використаються для представлення сигналів і функцій у вигляді суперпозицій вейвлетів на різних масштабних рівнях декомпозиції (розкладання) сигналів. Перші теоретичні роботи з основ вейвлетних перетворень були виконані в 90-х роках минулого століття Мейером (Mayer Y.), Добеши (Daubechies I.) і Маллатом (Mallat S.A.). Математичний апарат вейвлет-перетворення перебуває в стадії активної розробки, однак спеціальні пакети розширень по вейвлетам уже існують в основних системах комп'ютерної математики (Matlab, Mathematica, Mathcad, і ін.).
У цей час вейвлет-перетворення й вейвлетний аналіз використовуються в багатьох галузях науки й техніки для всяких завдань: для розпізнавання образів, для чисельного моделювання динаміки складних нелінійних процесів, для аналізу апаратної інформації й зображень у медицині, космічній техніці, астрономії, геофізиці, для ефективного стиску сигналів і передачі інформації з каналів з обмеженою пропускною здатністю й т.д.
Дата публикования: 2014-12-11; Прочитано: 174 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!