![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Метод группового учета аргументов (МГУА) — семейство индуктивных алгоритмов для математического моделирования мультипараметрических данных. Метод основан на рекурсивном селективном отборе моделей, на основе которых строятся более сложные модели. Точность моделирования на каждом следующем шаге рекурсии увеличивается за счет усложнения модели.
Автор метода - Ивахненко Алексей Григорьевич.
Даны данные наблюдений: . Необходимо построить наилучшую в определенном смысле модель
.
Выбор полиномов обусловлен тем свойством, что согласно теореме Вейерштрасса, любую непрерывную на конечном интервале функцию можно со сколь угодно высокой точностью представить в виде полинома определенной степени. Сложность модели в таком случае определяется количеством коэффициентов
Обычно степень полинома опорной функции выбирается не выше N − 1, где N - количество точек выборки. Часто бывает достаточно использовать в качестве опорных функции полиномы второй степени. В таком случае на каждом шаге итерации степень результирующего полинома удваивается.
Вместо полинома Колмогорова-Габора можно использовать ряды Фурье. Их имеет смысл применять, если в исходных данных наблюдается периодичность (например, уровень воды в реках, температура воздуха, объём осадков). Полученная в таком случае модель будет полигармонической [1].
Часто исходную выборку разбивают на две подвыборки A и B. Подвыборка A используется для определения коэффициентов модели, а подвыборка B — для определения качества (коэффициента детерминации или среднеквадратического отклонения). При этом соотношение количества данных в обеих выборках может быть как 50%/50% так и 60%/40%.
Статистика показывает, что с каждым шагом итерации уменьшается среднеквадратическое отклонение. Но после достижения определенного уровня сложности (зависит от характера и количества данных, а также общего вида модели), СКО начинает расти.
Дата публикования: 2014-11-29; Прочитано: 351 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!