![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
1. Комутативність диз’юнкції і кон’юнкції*. Слово комутативний означає – переміщувальний (переместительный). Цей закон, який виражає незалежність суми або добутку від перестановки доданків (слагаемых) або множників.
2. Асоціативність диз’юнкції і кон’юнкції*. Слово асоціативний означає – сполучений (сочетательный). Це закон, який виражає незалежність суми або добутку від заміни деяких доданків їх сумою або деяких множників їхнім добутком.
3. Дистрибутивність кон’юнкції відносно диз’юнкції* і диз’юнкції відносно кон’юнкції. Слово дистрибутивний означає – розподілю вальний (распределительный). Це закон, який виражає незалежність добутку алгебраїчної суми на яке-небудь число від заміни на алгебраїчну суму добутків окремих доданків на це ж число.
4. Закон ідемпотентність (рівнодія, повторення, тавтологія)*.
5. Закони, що визначають дії з константами *.
6. Закон виключеного третього *.
7. Закон протиріччя *
8. Закон подвійного заперечення *.
9. Закон де Моргана *.
10. Закон поглинання *.
11. Закон склеювання *.
12. Закон Парецького *
Обчислення значень логічних виразів полягає у заміні булевих змінних у виразі їх значеннями і виконанні з цими значеннями передбачених виразом операцій*.
Послідовність виконання операцій:
1) вирази у дужках;
2) вирази під знаком заперечення (інверсії);
3) кон’юнкції;
4) диз’юнкції.
Приклад: хай булеві змінні мають такі значення:
a = 1; b = 0; c = 1; d = 0.
Тоді:
Тотожні перетворення логічних виразів полягають у застосуванні до їх частин або виразів в цілому основних законів булевої алгебри.
Метою таких перетворень є зменшення витрат на обчислення значень логічних виразів та їх аналіз за рахунок спрощення цих виразів.
Приклад:
Вираз (1)* потребує для обчислення виконання 10-и операцій.
Вираз (2)* потребує для обчислення виконання 3-х операцій.
Для багатьох практичних застосувань велике значення мають перетворення та спрощування формул, які побудовані за допомогою булевих функцій. Найпростіший спосіб встановлення еквівалентності формул складається з перевірки збігання стовпців значень відповідних функцій у загальній таблиці їх визначення. Перетворення логічних виразів можна з’ясувати шляхом розглядання інших елементарних функцій, а саме – поетапної побудови їх таблиць істинності.
Дата публикования: 2014-11-18; Прочитано: 9175 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!