Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Основные этапы отыскания решения



В процессе приближенного отыскания корней уравнения (2.1) обычно выделяют два этапа: локализация (или отделение) корня и уточнение корня.

Локализация корня заключается в определении отрезка [a, b], содержащего один и только один корень. Не существует универсального алгоритма локализации корня. В некоторых случаях отрезок локализации может быть найден из физических соображений. Иногда удобно бывает локализовать корень с помощью построения графика или таблицы значений функции y = f(x). На наличие корня на отрезке [a, b] указывает различие знаков функции на концах отрезка. Основанием для этого служит следующая теорема математического анализа.

Теорема 2.1. Если функция f непрерывна на отрезке [a, b] и принимает на его концах значения разных знаков, так, что f(a)f(b) < 0, то отрезок [a, b] содержит по крайней мере один корень уравнения f(x) = 0.

Однако, корень четной кратности таким образом локализовать нельзя, так как в окрестности такого корня функция f(x) имеет постоянный знак.

На этапе уточнения корня вычисляют приближенное значение корня с заданной точностью > 0. Приближенное значение корня уточняют с помощью различных итерационных методов. Суть этих методов состоит в последовательном вычислении значений x0, x1, …, xn, …, которые являются приближениями к корню x*.





Дата публикования: 2014-11-18; Прочитано: 246 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...