Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Напряжения в поперечном сечении



Опыты показывают, что если на поверхности бруса круглого сечения нанести прямоугольную сетку, а на торцевой поверхности нанести радиальные
B
B1
B
B1
j
g
Рис. 5.4
r
dA
t
 
T
x
dx
линии (рис. 5.4), то после деформации кручения окажется, что:

а)все образующие поворачиваются на один и тот же угол g, а прямоугольники, нанесенные на поверхности, превращаются в параллелограммы;

б) торцевые сечения остаются круглыми, плоскими, расстояния между ними не меняются;

в) каждое сечение поворачивается относительно другого на некоторыйугол j, называемый углом закручивания;

г) радиальные линии на торцевой поверхности остаются прямыми.

На основании этих наблюдений можно заключить, что может быть принята гипотеза Бернулли (гипотеза плоских сечений), а в вале возникают условия чистого сдвига, в поперечных сечениях действуют только касательные напряжения, а нормальные напряжения равны нулю.

Рассмотрим поперечное сечение вала, расположенное на некотором расстоянии х от торцевого сечения, где Мк = T (рис. 5.4). На элементарной площадке будет действовать элементарная сила t × , момент относительно оси вала, создаваемый этой силой равен (t × r. Крутящий момент Мк, в сечении равен

(5.1)

Для того чтобы проинтегрировать это выражение необходимо знать закон распределения напряжений в сечении. Выделим из вала элементарное кольцо длиной и толщиной dr (рис. 5.5).

C
r
dr
B
B1
O
dj
g
dx
Рис. 5.5
tmax
 

Правый торец элемента повернется относительно левого на угол dj, образующая СВ повернется на угол g и займет положение СВ 1. Угол g - относительный сдвиг. С одной стороны из треугольника ОВВ 1 найдем:

.

С другой стороны из треугольника СВВ 1 получим: .

Приравнивая правые части полученных выражений, имеем:

.

На основании закона Гука при сдвиге:

. (5.2)

Подставив выражение (5.2) в (5.1), получим:

.

Откуда

. (5.3)

Подставим значение в выражение (5.2) получим:

. (5.4)

Таким образом, касательные напряжения при кручении прямо пропорциональны расстоянию от центра тяжести сечения до рассматриваемой точки и одинаковы в точках, одинаково удаленных от центра тяжести сечения (рис. 5.5). При r = 0 получим t = 0.

Наибольшие напряжения возникают в точках контура сечения при r = R:

.

Величина отношения полярного момента инерции к радиусу вала называется моментом сопротивления сечения при кручении или полярным моментом сопротивления

.

Для сплошного круглого сечения

.

Для кольцевого сечения

,

где .

Тогда максимальные касательные напряжения равны

. (5.5)





Дата публикования: 2014-11-26; Прочитано: 351 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...