Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Поняття зносу каналу ствола 3 страница



3) Площа отвору регулюючого кільця .

4) Змінна площа веретена .

5) Змінна площа кільцевого зазору між веретеном і регулюючим кільцем .

6) Мінімальна площа для проходу рідини в замодераторний простір W=Атн-Ар.

Сила гальма відкоту буде дорівнювати сумі проекцій сил, діючих на шток з поршнем уздовж його осі:

Ф = Р1Ат + Р1(Атн-ар) – РзАтн.

Після численних перетворень даний вираз прийме наступний вигляд:

,

де к = 1,2 – 1,4: К3 = 3 – 4, і всі величини (окрім ) змінні і відомі.

визначається з виразу: .

Важливою позитивною якістю гальма веретенного типу є те, що у нього гальмо накоту (модератор) діє по всій довжині накоту. Це здійснюватиметься, якщо під час накоту вакуум буде зосереджуватися тільки в неробочій порожнині циліндра, а порожнина штока повністю заповнюватиметься рідиною.

Умова заповнення порожнини штока рідиною визначається з виразу: .

При недотриманні даної умови необхідно змінювати розміри гальма з урахуванням характеру цієї залежності.

Сила гідравлічного опору гальма при накоті складається з Фн = Фон + Фтн,

де Фон – сила гальма відкоту при накаті;

Фтн – сила гальма накоту.

Ця сила розраховується з виразу:

.

Коефіцієнти опору струменя вимірюються в межах: К =К=1,2 – 1,4: К =1,5 – 1,7, а також розраховується площа канавок штока: атн = nbh,

де n – число канавок 2-4 і розташовуються вони в порожнині штока; b – ширина канавки 5-10 мм.

Тепловий режим гальма відкоту при стрільбі

Енергія, поглинена гальмом відкоту при пострілі, перетворюється на тепло, це приводить до нагріву рідини. Підвищення температури рідини викликає збільшення її об'єму і зменшення в'язкості.

Збільшення об'єму рідини без вживання спеціальних заходів (вживання компенсаторів, недоливу рідини) може привести до недокоту ствола.

Зменшення в'язкості рідини викликає зменшення сили гідравлічного опору гальма (зменшення коефіцієнтів опору К , К ,К), а це приводить до збільшення відкоту і різкості накоту.

Нагрівання рідини вище 90°С може привести до різкого зниження її в'язкості, втрати пружних властивостей гумових комірів ущільнень, виплавки чи просочення сальникових ущільнень.

Через складність процесів теплообміну дослідження теплового режиму гальма відкоту є вельми складною задачею. Її розв¢язання дозволяє встановити для даної гармати режими вогню, виходячи з наведеної температури нагріву рідини, розрахувати компенсатор рідини і т.д. Однією з технічних причин, обмежуючих режим вогню, є нагрів рідини в гальмі відкоту до гранично допустимої температури. При розрахунку приймають:

Тгр = 90°С для стеол-М;

Тгр = 110°С для веретенного масла.

Пристрій, призначений для підтримки постійного об'єму рідини в гальмі відкоту при стрільбі, називається компенсатором. Конструктивно він може бути:

- пружинним;

- пневматичним.

При нагріванні і розширенні внаслідок інтенсивної стрільби або значного підвищення температури навколишнього середовища надлишок рідини поступає в компенсатор з циліндра через отвір, стискаючи пружину або повітряну подушку компенсатора. Після охолоджування під тиском пружини або повітря рідина повертається в циліндр гальма відкоту.

При кожному пострілі внаслідок зміни тиску в неробочій порожнині циліндра відбувається перетікання рідині з компенсатора в циліндр і – назад. Для зменшення впливу пульсації рідини на роботу гальма відкоту площа отвору робиться невеликою або ставиться клапан.

Величина гранично допустимого тиску газу в компенсаторі Рпр визначається з виразу:

,

ця величина служить підставою для роботи пружини у разі вживання компенсатора пружинного типу.

У гальмі відкоту за відсутності компенсатора передба-чається недолив рідини, що становить 2-3% повного її об'єму.

В існуючих гармат найбільша швидкість відкоту Vmax = 10 – 12 м/c; то максимальна швидкість відкоту Vmax ³ 1,8 – 2,5 м/с.

Час відкоту Тотк = 0,1 – 0,2 с, час накоту Тн = 1 – 1,5 с.

3. Принцип будови та дія накочувача.

Накочувачі призначені для повернення частин відкоту при пострілі в початкове положення і надійного утримання їх в цьому положенні, в проміжку між пострілами і при поході.

Ідея пристрою гідравлічного накочувача полягає в наступному: циліндр, закріплений нерухомо в люльці, наповнений рідиною. Всередині циліндра поміщається поршень зі штоком. Шток з¢єднаний із казенником ствола. В правій частині циліндра у дна є отвір, який веде в з¢єднуючий канал. Останній з'єднується з іншим циліндром, заповненим частково рідиною. Вся решта простору всередині циліндра заповнена повітрям (газом), що знаходиться в стислому стані.

Під час відкату поршень зі штоком переміщатиметься всередині циліндра, а рідина з простору між поршнем і дном циліндра перетікатиме через з¢єднуючий канал у робочий циліндр, стискаючи повітря (газ), що знаходиться там. На додаткове стиснення цього газу витрачатиметься деяка частина енергії руху частин відкоту.

По закінченню відкату енергія, закумульована накочу-вачем, використовується для накоту частин відкоту до їх почат-кового положення до пострілу.

Дійсно, як тільки припиниться відкіт, повітря, стиснуте в циліндрі, почне тиснути на рідину, примушуючи її переходити назад в циліндр накочувача. Рідина тиснутиме, в свою чергу, на поршень і через шток примусить ствол повернутися в початкове до пострілу положення.

Проте енергія, накопичена накочувачем при відкоті, буде більше енергії, необхідної для виконання нормального накочу-вання ствола. Щоб уникнути швидкого накату і можливих ударів об люльку частин, що накочуються, в ПВП передбачається спеціальний пристрій, поглинаючий накат. Цей пристрій назива-ється гальмом накоту.

Під час відкоту накочувач бере участь в гальмуванні частин відкоту поглинаючи деяку частину енергії віддачі, яку і використовують при накоті ствола.

Сила накочувача, необхідна для надійного утримання ство-ла в положенні до пострілу, виходить за рахунок попереднього підтискання.

Накочувачі діляться на 2 основні типи:

- пружинні;

- пневматичні.

Пружинні бувають:

- зі звичними циліндровими пружинами;

- з телескопічними пружинами;

- з пружинами Бельвілля.

Пневматичні бувають:

- повітряні;

- гідравлічні, які бувають:

- з безпосереднім дотиком повітря з рідиною;

- з плаваючим поршнем.

Пружинні накочувачі складаються з однієї або декількох пружин, розташованих по циліндру гальма відкоту і мають деяке попереднє підтискання. Іноді пружини надівають безпосередньо на ствол. При відкоті пружини додатково розтягуються, на що витрачається деяка частина енергії відкату, яка надалі і викорис-товується для накоту ствола.

Позитивні якості пружинних накочувачів:

- простота конструкції;

- надійність дії;

- легкість виготовлення.

Застосовуються в артилерії - до 76 мм і в гірській артилерії з телескопічними пружинами. При пострілі шток відкочується, і його поршень стискає внутрішню пружину, що спирається на дно циліндра, внаслідок чого він відходить назад і своєю закраїною стискає зовнішню пружину, що спирається на дно люльки.

Гідропневматичний накочувач – з безпосереднім дотиком рідини з повітрям.

У гарматах крупного калібру для запобігання вакууму в гальмах використовуються наповнювачі, які складаються з циліндра, приймача, незворотного клапана і регулятора.

При відкаті штоки гальма відкоту наповнювача виходять із циліндрів, рідина з циліндрів витісняється поршнем у приймачі через незворотний клапан. З приймача рідина поступає в передню порожнину гальма і заповнює вакуум, що утворився. При накаті надлишок рідини з циліндра гальма витісняється в приймач, звідки через регулятор поступає в циліндр.

Компенсатори служать для автоматичного регулювання кількості рідини в циліндрі гальма при нагріванні і охолод-жуванні і є додатковим резервуаром, з якого рідина в міру необхідності самоплив поступає в циліндр гальма. Компенсатор частково заповнений рідиною.

Пристрої ущільнювачів служать для попередження витоку рідини і газу з циліндрів ПВП. Вони встановлюються в місцях приєднання штоків через циліндри і на поршнях.

За конструкцією ущільнювачі бувають:

- тонкої підгонки;

- комірні (1,2-х) підковообразної форми;

- сальникові або самостійні, а не з коміром.

Сальник – жгут, шнур, прядивний кінець просочений жиром і спресований.

Для розрахунку ПВП необхідно знати значення сили накочувача в процесі відкату і накоту ствола.

Задача полягає у визначенні сили накочувача у функції від шляху відкату П = f (X).

Процес стиснення і розширення газу в накочувачі відбува-ється згідно із законом:

PWn = PoW = const,

де P і W – поточне значення тиску і об'єму газу в накочувачі;

Po і Wo – початкове значення до відкату;

n – показник политропи = 1,2.

W = Wo – AнХ – поточний об'єм газу, рівний різниці його об'єму і об'єму витисненої з робочого циліндра рідини у момент відкоту,

де - робоча площа поршня накочувача;

D – діаметр поршня;

d – діаметр штока;

X – шлях відкоту.

Відношення початкового об'єму газу до поточного визначається з виразу: ,

де - наведена довжина початкового об'єму газу в накочувачі.

Поточне значення тиску визначається з виразу: , оскільки сила накочувача П=РАн і початкова сила По = РоАн, то закон зміни сили накочувача у функції шляху відкоту визначається з виразу: .

Початкова сила накочувача По виходить з умови надійного утримання частин відкоту при всіх кутах вертикального наведення, для цього вона повинна долати опір двох сил:

- складові сили маси;

- сили тертя.

Їх можна визначити з виразу: По ³ Mo g (sinφ + f cosφ + ) і є функцією По = f(φ),

де tgφ = 1/f при f = 0,2 φm = 800.

Для гармат польової артилерії φmax < φm, тому необхідна сила По розраховується при φ = φmax з 10% заданим запасом:

По = 1,1Mo g (sinц + f cosφ + ).

Початкова сила накочувача надійно утримуватиме частини відкоту і при великих кутах наведення.

На практиці По = (1,0 – 1,25) Mo g.

Наведену довжину початкового об'єму газу So визначають, використовуючи поняття про ступінь стиснення газу,

m – це відношення сили накочувача і початкової:

, звідки .

Для польових гармат для гідропневматичних накочувачів прийнято, що m = (1,5-3).

При виборі ступеня стиснення необхідно поміркувати.

1. Прийнята величина m повинна бути не менше граничного m £ mпр. Граничне значення ступеня стиснення витікає з умови стійкості після відкоту:

На практиці mпр = 4 – 5

2. Зі збільшенням m збільшується надмірна енергія накочувача, яка повинна бути поглинена гальмом накоту, чим доповнюються робота і конструкція гальма.

3. Початковий об'єм газу в накочувачі зі збільшенням m зменшується So і початковий об'єм газу Wo, а значить, зменшуються габарити накочувача.

4.Збільшення m приводить до збільшення тиску в накочувачі в кінці відкоту, що збільшує інтенсивність нагріву газу і ускладнює його обтюрацію.

Лекція № 6

Тема 1. Заняття 6. Механізми наведення.

1.Призначення і основні вимоги, що пред'являються до механізмів наведення і їх класифікація.

2. Принцип побудови та дії механізмів наведення (секторні, кругові, гвинтові).

3. Приводи механізмів наведення.

1. Призначення і основні вимоги, що пред'являються до механізмів наведення і їх класифікація.

Механізми наведення артилерійської гармати – це силова передача від рухової частини приводу до частини артилерійської гармати, що коливається або обертається.

Механізми наведення призначені для надання стволу необхідного положення в просторі, при якому середня траєкторія снарядів пройде через ціль.

Навести гармату на ціль – це значить надати стволу напрям по горизонту у бік цілі і такий кут піднесення, при якому снаряд повинен летіти на дальність, що дорівнює відстані від гармати до цілі.

Положення ствола визначається кутами наведення. Кути наведення вводяться на гарматі за допомогою прицільних пристроїв. Для виконання задачі зустрічі снаряда з ціллю в будь-якій гарматі є самостійний комплект механізмів, що здійснює горизонтальне наведення і окремо – вертикальне наведення.

Механізми наведення, як правило, складаються з трьох ланок:

- ведучої;

- передавальної;

- виконавчої.

Ці ланки призначаються для передачі руху від приводу до частин (що коливаються або обертаються) гармати. Найпоши-ренішим способом передачі руху (як всередині ланки, так і від ланки до ланки) є механічна передача, яка складається з ланцюга кінематичних пар.

Кінематична пара є двома деталями механізму, що беруть участь у передачі руху і мають можливість взаємно переміщатися.

Основною кінематичною парою називається пара, один з елементів якої жорстко або шарнірно пов'язаний безпосередньо з частиною, що обертається або коливається, гармати і мають з нею загальну швидкість обертання.

Найпоширенішими видами механічних передач є:

- гвинтові;

- черв'ячні;

- зубчаті;

- ланцюгові.

Гвинтові передачі звичайно складаються з:

- гвинта;

- гайки.

Вони призначаються для перетворення обертального руху в поступальний.

Гвинти виконуються з прямою або трапецеїдальною різьбою, що дозволяє одержувати великий виграш у силі, а значить і більш високий ККД в порівнянні з різьбою трикутного профілю. При цьому трапецеїдальна різьба переважно прямо-кутної форми, оскільки вона дає можливість проводити регулювання мертвого ходу при зносі різьби і є більш міцною.

Позитивними властивостями гвинтової передачі є:

- простота конструкції і виготовлення;

- виграш в силі;

- можливість забезпечення високої точності переміщення;

- простота експлуатації.

Основним недоліком гвинтової передачі є:

- малий ККД.

Зубчата передача в основному служить для передачі обертального руху, але зустрічаються механізми, де її викорис-товують для перетворення обертального руху в поступальний.

Зубчаті передачі бувають:

- циліндричні;

- конічні;

- гвинтові.

Черв'ячна передача складається з:

- черв'яка (гвинта з трапецеїдальною нарізкою);

- черв'ячного колеса (зубчате колесо із зубами особливої форми).

Позитивними якостями черв'ячної передачі є:

- можливість одержати великі передаточні числа;

- плавність ходу;

- компактність конструкції;

- безшумність роботи;

- можливість передачі, що самогальмується.

Недоліками черв'ячної передачі є:

- порівняльно невисокий ККД;

- необхідність виготовлення черв'ячного колеса з дорогих антифрикційних матеріалів.

Ланцюгові передачі забезпечують передачу руху при значних міжосьових відстанях (до 8 м).

Позитивні якості ланцюгових передач:

- малі габарити;

- мають постійне передаточне число;

- високий ККД.

До недоліків ланцюгових передач відносяться:

- витягання ланцюга внаслідок зносу в шарнірах;

- необхідність ретельного монтажу і обслуговування;

- деяка нерівномірність ходу передачі, особливо при малих числах зубів і великому кроці зірочки;

- непридатність передачі при необхідності періодичного реверсування без пауз.

До механізмів наведення пред'являються наступні вимоги:

1.Точность і плавність наведення;

2.Влучність наведення.

3.Можливість здійснювати наведення по швидкісним цілям.

4.Невеликі зусилля на органах керування.

5.Наявність резервних (ручних) каналів наведення.

6.Широкий діапазон кутів наведення:

7.Незбиваємість наведення.

8.Обмеження кутів наведення.

9.Можливість автоматичної зупинки на куті заряджання:

10.Простота конструкції і безпека в експлуатації, оглядах, технічному обслуговуванні і ремонті.

11.Міцність і живучість.

12.Мала уразливість від вогню противника.

13. Можливість вибірки мертвих ходів.

Легкість наведення визначається величиною зусилля на маховику механізму Рм, яка необхідна для виконання наведення із заданою швидкістю, і вони складаються з:

- зусилля, необхідного для подолання моментів тертя в цапфах люльки або штирьового пристрою;

- зусилля, необхідного для подолання моменту неврівноваженості частини, що коливається;

- зусилля, необхідного для подолання сил інерції.

Величина зусилля на маховику механізму наведення визначається із залежності:

Рм DМ + ),

де Rмax – радіус маховика;

imax- передавальне число механізму;

h max- ККД механізму;

DМ – момент неврівноваженості частини, що коливається;

Мтр – момент сили тертя в цапфах;

Iкl- момент інерції частини, що коливається;

w – кутова швидкість;

tрозг – час розгону.

При ручному приводі маховика величина цього зусилля повинна бути в певних межах.

Верхня межа встановлюється за умови забезпечення тривалої роботи навідного. При визначенні верхньої межі величини зусилля виходять з того, що нормально фізично розвинена людина може проводити рукою 100-120 одноманітних рухів на хвилину і розвивати при цьому потужність до 75Вт.

Нижня межа вибирається з умови виключення збиття наведення від випадкових причин.

Для ручних приводів зусилля на маховику механізмів наведення не повинне перевищувати:

- 30 – 40 Н при тривалій роботі і сталому русі;

- 70 – 80 Н при нетривалій роботі, а також при зрушенні з місця і наданні прискорення рухомим частинам у період розгону.

В період розгону зусилля на маховику Рр = (1,5-2) Рм.

Для виключення збиття наведення гармати від дії незначних випадкових причин нижня межа на маховику механізмів наведення повинна бути не менше 20 Н.

У службових умовах легкість наведення залежить, у значній мірі, від загального стану механізмів:

- якості збірки;

- регулювання;

- мастила;

- ступеня забруднення деталей.

Швидкість наведення вимірюється величиною кута переміщення ствола в площині за секунду, або одним оборотом маховика при роботі на механізмах наведення.

Необхідна швидкість наведення визначається тактико – технічними вимогами до гармати. Величина її залежить від:

- призначення гармати;

- потужності джерела енергії;

- характеру привода.

Звичайно швидкості наведення коливаються від 0,5° на с (для гармат крупного калібру) до 15° на с (для зенітних гармат).

Сталість наведення – здатність механізму міцно і надійно фіксувати наведення після його виконання і при пострілі із гармати.

Сталість наведення забезпечується:

- вживанням у кінематичних ланках механізму пар, що самогальмуються (гвинтова, черв'ячна);

- вживанням гальмівних пристроїв;

- використанням пристроїв для вибору мертвих ходів;

- достатньою жорсткістю елементів, що беруть участь у передачі зусилля.

Умова самогальмування визначається залежністю:

Рsina < f Pcosa, або tga < f.

Чим менше коефіцієнт тертя f, тим менше повинен бути кут підйому гвинтової лінії a (черв'яка або гвинта) для отримання самогальмування передачі.

Для поворотних механізмів (КГН) застосовується aпр не більше 4 град.

Для підйомних механізмів (КВН) – не більше 3 град.

Плавність наведення забезпечується рівномірною швидкіс-тю наведення. Відсутність плавності може затрудняти безперерв-ність спостереження за ціллю і навіть зробити наведення неможливим.

Плавність наведення, головним чином, залежить від:

- загального стану механізму;

- якості догляду за ним (своєчасністю змащення, видалення бруду і інше).

Плавність наведення здійснюється за рахунок:

- вживання передач, що забезпечують постійність передавального числа (зубчаті, гвинтові та ін. передачі);

- вживання передач, що забезпечують плавну зміну передавального числа (гвинтові передачі, шарніри).

Зручність експлуатації механізмів наведеннязабезпечується створенням для навідного зручних умов, сприяючих тривалій роботі.

Мала уразливість від вогню противника.

Враховуючи особливу відповідальність, складність конструкції і трудність виправлення пошкоджених механізмів наведення, їх необхідно розташовувати на гарматах захищено і, по можливості, компактно.

Під живучістю механізмів наведення розуміють їх здатність у перебігу тривалого терміну виконувати задачі без розрегулювання, зносу і пошкоджень.

Живучість механізмів наведення залежить від:

- якості вживаних матеріалів;

- характеру докладаємого навантаження;

- якості обробки деталей;

- якості збирання і регулювання;

- якості мастила, його стану;

- ступеню кваліфікації обслуги;

- якості обслуговування і зберігання.

Особливості експлуатації механізмів наведення:

- робота в польових умовах, у будь-який час року і за будь-яких погодних умов;

- механізми наведення є такими, що транспортуються;

- несприятливий динамічний характер докладаємого навантаження до деталей механізму.

Для забезпечення живучості механізмів наведення застосовуються спеціальні пристрої:

а) захисні засоби

- кожухи;

- повстяні ущільнення;

- прокладки.

б) стопори кріплення гармати по – похідному, що відключають передавальні ланки на марші і приймають на себе інерційні зусилля, які виникають при транспортуванні;

в) амортизації, що забезпечують рухливість з'єднання і пом'якшують навантаження;

г) пристрої, забезпечуючі регулювання усунення мертвих ходів.

Класифікація механізмів наведення

Механізми наведення класифікуються за декількома ознаками.

За призначенням:

- механізми горизонтального наведення - для переміщення частин гармати, що обертається, навкруги її вертикальної осі в горизонтальній площині;

- механізми вертикального наведення – для повороту частин гармати, що коливається, навкруги осі цапф у вертикальній площині;

- механізми стабілізації – для вирівнювання по горизонту гармати або утримання осі цапф гармат у горизонтальній площині при коливанні самохідної установки.

По приводу:

- механізми з ручним приводом, в яких зусилля навідного приводять в рух гармату.

- механізми з електричним приводом, в яких дія на механізм здійснюється від електродвигуна;

- механізми з гідравлічним приводом, в яких силовий привід працює на гідравліці (цей спосіб застосовувався на початку століття);

- механізми з електрогідравлічним приводом, у яких джерелом рушійної сили є електродвигун постійної швидкості, пов'язаний з гідрорегулятором, який змінює швидкість і напрям обертання.

За способом керування:

- з ручним керуванням – де навідний безпосередньо впливає на виконавчий механізм;

- з напівавтоматичним керуванням – у якому навідний впливає через привід на регулятор, а той, у свою чергу, діє на виконавчий механізм;

- з автоматичним (дистанційним) керуванням, в якому на регулятор впливає серводвигун, а навідний виконує роль контролера роботи приладів;

- змішаний.

2. Принцип будови та дії механізмів наведення (секторні, кругові, гвинтові)

Механізм ручного наведення складається, як правило, з:

- розмаху;

- коробки конічної передачі;

- карданної передачі;

- лебідки з черв'ячною передачею;

- корінної шестерні, яка обкачується по зубчатому ободу механізму горизонтального наведення або по зубчатому сектору механізму вертикального наведення.

Принцип дії полягає в тому, що обертаючий момент від розмаху, через конічну пару, карданну передачу поступає на лебідку, корінна шестерня якої обкачується по зубчатому ободу і придає гарматі необхідне положення щодо горизонту.

У лебідках застосовуються пристрої, що не дають викрив-лення наведення при пострілі.

Ланкою, що забезпечує самогальмування механізму, є черв'ячна пара (черв'як і черв'ячне колесо). Тому зусилля, що виникають при пострілі і різкому припиненні наведення, передаються на деталі до черв'ячного зачіплення.

Така рухливість з'єднання здійснюється за допомогою фрикційного пристрою, основою якого є 3 пари дисків. Кожна пара складається із сталевого і бронзового дисків.

Сталеві диски за допомогою шліців жорстко пов'язані з валом зубчатої шестерні, а бронзові – жорстко пов'язані з черв'ячним колесом за допомогою виступів. Поверх всіх дисків встановлюється сталевий верхній диск і тарілчаті пружини, які підтискаються гайкою, що нагвинчується на хвостовик валу.

Таким чином, черв'ячне колесо з'єднується з валом безпосереднім тертям між сталевими і бронзовими дисками. При роботі механізму обертання черв'ячного колеса через тертя між дисками передається на вал зубчатої шестерні. При різкому припиненні обертання маховика механізму, через інерцію обертання передається на зубчату шестерню з валом і черв'ячним колесом. Черв'ячне колесо з черв'яком гальмують рух частини, що обертається. Якщо сила інерції велика, то зубчата шестерня з валом провертатиметься щодо черв'ячного колеса і тим самим виключить поломку зубів черв'ячного колеса.

За своїм складом, будовою і принципом дії механізми вертикального і горизонтального наведення мало відрізняються один від одного. В більшості випадків наведення в обох площинах проводиться одночасно.

Зубчатий обід закріплений на нерухомій основі. З ним в зачіпленні знаходиться корінна шестерня, вісь якої – корінний вал – закріплена в поворотній частині гармати. Вал корінної шестерні із системою черв'ячної передачі з¢єднаний з розмахом навідника. Черв'ячна передача в механізмах ручного наведення підресорюється або має всередині черв'ячного колеса систему, що фрикційно зачіпляє. В результаті вона (черв'ячна пара) вдало виконує роль не тільки передачі руху від одного вала до іншого, але і просто вирішує задачу самогальмування та утримання ствола в наведеному положенні і сприйняття без поломок зубів черв'ячної пари при великому зусиллі при пострілі.

При ручному наведенні рух від розмаху навідного передається через пару конічних шестерень, черв'ячну пару і вал на корінну шестерню, яка обкочується по нерухомому зубчатому ободу шарового погона, приводить в рух всю частину, що обертається, здійснюючи тим самим горизонтальне наведення гармати. Аналогічно проводиться наведення частини, що коливається, по вертикалі, де корінна шестерня, яка знаходиться в зачіпленні із зубчатим сектором, повертає гармату на необхідний кут наведення або зниження.





Дата публикования: 2014-11-26; Прочитано: 300 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.039 с)...