![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
- 327 -
Разработку газовых залежей, имеющих оторочку нефти с промышленными запасами, следует производить после выработки нефти из оторочки.
В отдельных случаях в процессе разработки нефтяной оторочки можно отбирать газ из газовой части пласта, но с таким расчетом, чтобы давление как в нефтяной, так и в газовой частях пласта, снижалось одинаково. При несоблюдении этого правила начнется перемещение нефти в газовую часть пласта, где она покроет тонкой пленкой ранее сухие стенки пор. Пленочную нефть из пласта извлечь очень трудно. Указанное явление приведет к снижению нефтеотдачи. По той же причине не рекомендуется до выработки основной части нефти добывать газ из газовых шапок.
Принципы разработки многопластовых газовых месторождений аналогичны таковым нефтяных месторождений. Отдельные пласты группируют в объекты разработки.
Для высокопродуктивных пластов с целью снижения сопротивления в эксплуатационной колонне и увеличения дебитов рекомендуется больший диаметр скважин.
6.5.8.Геологические особенности разработки газоконденсатных месторождений
Залежи газа, содержащие растворенные в газе жидкие углеводороды, называются газоконденсатными.
Во избежание выпадения в пласте конденсата при разработке газоконденсатных месторождений давление в пласте не должно падать ниже давления, при котором начинает выделяться жидкая фаза из газа. Разработку конденсатных залежей следует вести с поддержанием давления по схеме кругового процесса: газ из скважин поступает в конденсатную установку, в которой при соответствующих давлении и температуре выделяются жидкие компоненты. Затем сухой газ поступает в компрессоры, сжимается до давления, на 15—20% превышающего давление на устьях скважин, и под этим давлением через нагнетательные скважины поступает обратно в пласт. При такой разработке можно добыть до 90% конденсата.
Если газоконденсатные залежи разрабатываются без поддержания пластового давления, то на первой стадии их разработки следует ограничивать дебиты скважин с таким расчетом, чтобы забойное давление в добывающих скважинах было не ниже давления максимальной конденсации. В этом случае добыча конденсата может достигать 75%.
6.5.9.Особенности проектирования систем разработки нефтяных и газовых залежей
В нашей стране каждое месторождение вводится в разработку в соответствии с проектным документом, составленным специализи-
- 328 -
рованной научно-исследовательской организацией и предусматривающим ту систему разработки, которая наиболее рациональна для данного месторождения его геолого-физическими особенностями.
Под системой разработки месторождения понимают совокупность технологических и технических мероприятий, обеспечивающих извлечение нефти, газа, конденсата и попутных компонентов из пластов и управление этим процессом.
В зависимости от количества, мощности, типов и фильтрационной характеристики коллекторов, глубины залегания каждого из продуктивных пластов, степени их гидродинамической сообщаемое™ и т.д. система разработки месторождения может предусматривать выделение в его геологическом разрезе одного, двух и более объектов разработки (эксплуатационных объектов).
При выделении на месторождении двух или более объектов для каждого из них обосновывается своя рациональная система разработки. Будучи увязанными между собой, системы разработки отдельных эксплуатационных объектов составляют рациональную систему разработки месторождения в целом.
Рациональной называют систему разработки, которая способствует более полному извлечению из пластов нефти, газа, конденсата и полезных попутных компонентов при наименьших затратах. Рациональная система разработки должна предусматривать соблюдение правил охраны недр и окружающей среды, полный учет всех природных, производственных и экономических особенностей района, рациональное использование природной энергии залежей, применение при необходимости методов искусственного воздействия на пласт.
В основе выбора системы разработки месторождений УВ лежит геологопромысловое обоснование технологических решений:
1) о выделении эксплуатационных объектов на многопластовом месторождении;
2) о необходимости применения метода искусственного воздействия на залежь или целесообразности разработки объекта с использованием природной энергии;
3) при необходимости — о методе воздействия и его оптимальной разновидности; о соответствующем взаимном размещении нагнетательных и добывающих скважин на площади:
4) о плотности сетки скважин;
5) о градиенте давления в эксплуатационном объекте;
6) о комплексе мероприятий по контролю и регулированию процесса разработки.
По каждому из названных пунктов должны приниматься решения, наиболее полно отвечающие геологической характеристике эксплуатационного объекта. При этом по одним пунктам рекомендации могут быть даны однозначно уже по данным промыслово-
- 329 -
геологических исследований, по другим — могут быть предложены две-три близкие рекомендации. На этой основе специалистами в области технологии разработки месторождений выполняются гидродинамические расчеты нескольких вариантов системы разработки. Варианты различаются сочетанием рекомендаций по пунктам, обоснованных по геологическим данным. Из них выбирают оптимальный вариант, соответствующий требованиям, предъявляемым к ра- циональноной системе разработки. Выбор оптимального варианта выполняют на основе сравнения динамики годовых технологических и экономических показателей разработки рассмотренных вариантов.
Исследования по обобщению опыта разработки нефтяных месторождений выполненные в разные годы и в разных масштабах, свидетельствуют о том, что основное влияние на динамику технико-экономических показателей разработки оказывает геологопромысловая характеристика объектов. Вместе с тем применение системы разработки, соответствующей геолого-физическим условиям, дает возможность в значительной мере снивелировать неблагоприятные геолого-промысловые особенности эксплуатационных объектов.
Обоснование выделения эксплуатационных объектов и оптимальных вариантов систем разработки каждого из них базируется на сформированной к началу проектных работ геологической модели каждой из залежей и месторождения в целом.
Геологическая модель представляетсобой комплекс промысловогеологических графических карт и схем, цифровых данных, кривых, характеризующих зависимости между различными параметрами залежей, а также словесное описание особенностей залежей.
Среди графических карт и схем обязательны: сводный литологостратиграфический разрез месторождения; схемы детальной корреляции; структурные карты, отражающие тектоническое строение эксплуатационного объекта; карты поверхностей коллекторов объекта с нанесением начальных контуров нефтегазоносное™; геологические профили по эксплуатационному объекту с отражением условий залегания нефти и газа; карты распространения коллекторов (для каждого пласта в отдельности); карты полной, эффективной, эффективной нефтенасыщенной и газонасыщенной толщины в целом по объекту и по отдельным пластам. При специфических особенностях залежи приводятся необходимые дополнительные карты и схемы (схема обоснования положения ВНК и ГВК, карты распространения коллекторов разных типов, проницаемости и др.).
Количественными значениями характеризуются пористость, проницаемость, начальная нефте(газо)насыщенность пород-коллек- торов; полная, эффективная, эффективная нефте(газо)насыщенная толщина, толщина проницаемых разделов между пластами; физико-
- 330 -
химические свойства пластовых нефти, газа, конденсата, воды. При этом для каждого параметра указываются: число определений разными методами и число исследованных скважин; интервалы значений; оценка неоднородности на всех иерархических уровнях; среднее значение по объекту в целом и по его частям, изучаемым на разных уровнях.
К группе параметров с количественными значениями относятся также: статистические ряды распределения проницаемости; неоднородность пластов (соотношение объемов коллекторов разных типов, коэффициенты песчанистости, расчлененности, прерывистости, слияния и др.): термобарические условия; результаты проведенных в лабораторных условиях физико-гидродинамических исследований вытеснения нефти (газа) агентами, использование которых предполагается при разработке объекта.
К важнейшим количественным значениям геологической модели месторождения относятся: балансовые и извлекаемые запасы нефти, газа, конденсата, ценных попутных компонентов; размеры площади нефтеносности; ширина, длина и высота залежи; размеры частей залежи. В числе кривых, характеризующих зависимости между параметрами, приводят кривые зависимости физических свойств нефти и газа от давления и температуры, характеристику фазовых проницаемостей, зависимости коэффициента вытеснения от проницаемости.
В текстовой части геологической модели залежи описывается ее природный режим. На основе всех названных выше материалов излагаются основные геолого-физические особенности залежи, определяющие выбор технологических решений и системы разработки в целом, а также влияющие на ожидаемые показатели разработки.
Контрольные вопросы
1. Каковы принципы выделения эксплуатационных объектов в разделе месторождений?
2. Чем отличаются этажи разработки эксплуатационных объектов?
3. Какие геологические факторы определяют систему размещения эксплуатационных скважин на площади залежи?
4. Какими геологическими факторами определяется система заводнения?
Чем отличаются методы интенсификации добычи от методов увеличения нефтеотдачи?
- 331 -
6.6. Геолого-промысловый контроль за разработкой месторождения
6.6.1. Стадии процесса разработки нефтяных залежей
Процесс разработки нефтяной залежи характеризуются непрерывным изменением всех технологических показателей: уровня добычи нефти, жидкости, фонда добывающих скважин, пластового давления, объемов нагнетаемой воды и т.п. При этом каждая залежь в процессе всего срока разработки переживает несколько стадий, которые в зависимости от геологического строения пласта, вязкости нефти и условий разработки характеризуются присущими им особенностями изменения технологических и технических показателей.
Группа авторов (М.М. Иванова 1976 г.) Министерства нефтяной промышленности предложила по динамике добычи нефти выделять четыре стадии разработки.
I стадия — освоение и ввод скважин в эксплуатацию после бурения. Характеризуется ростом добычи нефти при небольшой ее обводненности. На первой стадии разбуривается весь основной фонд скважин.
II стадия - поддержание достигнутого наибольшего уровня добычи нефти. Отличается относительно стабильным высоким уровнем добычи при фонтанном способе, ростом обводненности к концу периода и переходом на механизированный способ эксплуатации скважин.
стадия — значительное снижение добычи нефти. Отмечается резким ростом обводненности продукции, снижается годовая добыча, значительная часть скважин выбывает из действующего фонда,
- 332 -
почти весь фонд скважин эксплуатируется механизированным способом. II и III стадии выделяются по 90%-ному уровню темпа отбора нефти.
IV стадия — завершение разработки залежи. Характеризуется низкими, медленно снижающимися уровнями добычи, высокой обводненностью продукции и действующих скважин.
Границы между стадиями более или менее надежно можно установить по изменению среднегодового темпа отбора нефти. При этом наиболее трудно определить границу между III и IV стадиями. М.М. Иванова предлагает за эту границу принимать точку на кривых изменения дебитов, в которой темп добычи нефти близок к 2% от начальных извлекаемых запасов. Это своего рода раздел между основными (I—III) и завершающей (IV) стадиями разработки залежей.
Изменение годовых темпов отбора нефти в процентах от начальных извлекаемых запасов нефти в зависимости от геологотехнологических факторов наглядно иллюстрирует рис. 110.
6.6.2. Методы геолого-промыслового контроля
за разработкой нефтяных и газовых залежей
Рациональная разработка залежей нефти и газа, поддержание проектных уровней добычи на каждой стадии могут быть обеспечены только при систематическом геолого-промысловом контроле. Контроль за разработкой залежей нефти или газа осуществляется путем исследования добывающих, нагнетательных и других скважин, наблюдений за перемещением ВНК, за обводненностью скважин и т.п. Полученные данные периодически подвергаются комплексной обработке и детальному анализу. Это позволяет контролировать состояние разработки и своевременно выявлять отклонения от принятого проекту.
Задача промысловых исследований в нефтяных скважинах состоит в определении основных параметров их работы. При этом на каждом режиме замеряют дебиты, пластовые и забойные давления, газовые факторы, содержание воды в продукции. В начальный период разработки залежи скважины исследуют на различных режимах, чтобы полнее выяснить характер их работы, определить уравнение притока и установить наиболее оптимальный режим эксплуатации. В процессе разработки скважины обычно исследуются на том режиме, на каком они эксплуатируются, и поданным исследования с учетом состояния разработки залежи устанавливается режим работы на следующий период эксплуатации. Промысловые исследования в скважинах являются тем минимумом необходимых работ, которые надо проводить в добывающих или нагнетательных скважинах. Однако их недостаточно для обеспечения полноценного геолого- промыслового контроля за разработкой объектов и залежей.
- 333 -
Прежде всего рассмотренный комплекс исследовательских работ не обеспечивает контроля за разработкой группы пластов, объединенных в один объект с целью эксплуатации их единой системой скважин. Определенные этими методами дебиты скважин и соответствующие им забойные, пластовые давления и другие параметры работы скважин относятся ко всему объекту. В то же время каждый пласт в зависимости от его коллекторских свойств, качества нефти, энергетических ресурсов и других особенностей проявляется в процессе эксплуатации по-разному. Одни пласты, более продуктивные, лучше отдают нефть, другие пласты — с низкими коллекторскими свойствами — почти не отдают ее. При закачке воды в группу пластов через одну систему нагнетательных скважин один пласт хорошо принимает воду, другие — хуже, а часть пластов совсем не принимает ее. Все это приводит к неравномерной выработке залежей.
Обычно в наиболее продуктивных пластах с хорошими коллекторскими свойствами запасы вырабатываются быстрее. По этим пластам происходит первоочередное обводнение добывающих скважин, в то время как другие, менее продуктивные, пласты еще содержат значительные остаточные запасы нефти.
Неравномерная выработка запасов нефти происходит также в одном мощном, но неоднородном пласте. В таких пластах нефть в первую очередь поступает в скважину из той части пласта, которая имеет лучшие коллекторские свойства. То же самое отмечается и при нагнетании воды в скважину. Подобные явления наблюдаются и при разработке газовых месторождений.
Однако перечисленным далеко не исчерпывается все многообразие сложных процессов, протекающих в пластах при разработке нефтяных или газовых месторождений. Для геолого-промыслового контроля за разработкой месторождений сложного строения в последнее время разработаны новые методы и созданы более совершенные приборы.
Новые виды исследований в первую очередь направлены на обеспечение контроля за выработкой каждого пласта и пропластка в отдельности. Это достигается путем установления дебита отдельных пластов в добывающих скважинах или их приемистости в нагнетательных скважинах, а также определения давления для каждого отдельного пласта в объекте.
К числу новых методов контроля за разработкой отдельных пластов эксплуатационных объектов и залежей со сложным геологическим строением относятся исследования радиоактивными изотопами, замеры дебитов и приемистости скважин дистанционными глубинными дебитомерами и расходомерами, отдельные виды промысловогеофизических исследований, фотоколориметрия нефти, гидропрослушивание пластов и т.п.
Метод радиоактивных изотопов позволяет выделить в нагнетательных скважинах пласты, принимающие воду. Для этого в сква-
- 334 -
жину через насосно-компрессорные трубы подается вода с радиоактивными изотопами. После продавливания активированной воды делается замер гамма-методом (ГМ), который сравнивается с контрольным замером ГМ, выполненным до прокачки изотопов. Против интервалов, поглощающих воду, вследствие адсорбции изотопов в призабойной части пласта на диаграммах ГМ отмечаются аномалии, в несколько раз превышающие фоновые значения. Однако метод радиоактивных изотопов лает возможность установить лишь качественную картину, но не позволяет определить, какой пласт сколько принимает воды.
Определение дебитов или приемистости отдельных пластов в скважинах осуществляется в основном глубинными дебитомерами или расходомерами. В настоящее время широкое распространение получили глубинные расходомеры-дебитомеры. Эти приборы предназначены для определения как приемистости отдельных пластов в нагнетательных скважинах, так и дебита отдельных пластов в добывающих скважинах.
Наиболее совершенными являются дистанционные приборы РГД-1, РГД-2, РГТ-1 с автоматическими электронными пультами записи показаний глубинных приборов в момент исследования.
На рис. 111 показана запись профиля притока нефти. На графике фиксируется кривая (см. рис. 1ll, 1), на которой участки с повышенными значениями соответствуют интервалам пласта, отдающим нефть. Прямолинейные участки кривой соответствуют интервалам, из которых приток ее не получен. По этой кривой определяют интервалы (см. рис. 111, 2), отдающие нефть, и удельный вес каждого интервала в общем дебите из исследуемого пласта.
При широком использовании глубинных расходомеров и деби- томеров можно получить необходимые данные о приемистости отдельных пластов в нагнетательных скважинах и о дебитах отдельных пластов в добывающих скважинах.
Для контроля за работой пласта используются промысловогеофизические методы. Нейтронный гамма-метод (НГМ) и нейтрон- нейтронный метод (ННМ) дают хорошие результаты при выделении водоносных или обводненных минерализованной водой пластов. В настоящее время сконструированы малогабаритные приборы, позволяющие проводить исследования через насосно-компрессорные трубы в фонтанирующих скважинах. Хорошие результаты для определения текущего положения ВНКдает импульсный генератор нейтронов.
Метод гидропрослушивания пласта позволяет установить степень гидродинамической связи между отдельными участками нефтяной залежи, а также между законтурной и нефтяной частями пласта по скорости передачи изменения давления.
Изменение давления в пласте достигается путем резкой остановки какой-либо высокопродуктивной скважины. После этого на дру-
- 335 -
![]() |
- 336 -
гом участке пласта в ранее остановленной скважине ведется наблюдение за давлением и фиксируются время и степень реакции этой скважины на остановку первой скважины.
С помощью гидропрослушивания можно установить гидродинамическую связь между двумя пластами. Для этого импульс изменения давления создается в одном пласте, а за изменением давления наблюдение устанавливается в скважинах, работающих с другого пласта.
6.6.3. Контроль за дебитами и приемистостью скважин
При разработке месторождений нефти и газа обязателен высокий уровень организации контроля за дебитами скважин по нефти, газу и жидкости, их продуктивностью, обводненностью скважин, газовым фактором (по нефтяным скважинам), приемистостью нагнетательных скважин.
Дебит скважины по жидкости (безводной - по нефти, обводненной — по нефти и воде) измеряется в т/сут с помощью автоматизированных групповых установок типа «Спутник». Пользование такими установками позволяет устанавливать отдельно количество нефти и попутной воды в общем дебите скважины по жидкости. В результате определяют обводненность продукции скважины, т.е. содержание воды в процентах во всей жидкости.
При недостаточно надежной работе системы «Спутник» обводненность продукции скважин определяют по пробам жидкости, отобранным из выкидных линий скважины, с помощью аппарата Дина и Старка, центрифугированием или другими методами.
Дебит попутного газа измеряют на групповых установках турбинным газовым счетчиком типа «Агат-1», а при использовании индивидуальной замерной установки — турбинным счетчиком или дифференциальным манометром с дроссельным устройством, устанавливаемым на выходе из трапа. В последнее время появляются новые, более совершенные замерные устройства отечественных и иностранных производителей.
Промысловый газовый фактор (в м3/т) вычисляют как отношение дебита попутного газа к дебиту сепарированной нефти.
Приемистость водонагнетательной скважины (в м3/сут) измеряют счетчиком или расходомером диафрагменного типа, установленным на кустовой насосной станции. Поскольку один разводящий водовод часто обеспечивает водой две-три скважины, замер приемистости скважины следует производить при остановке других скважин, питающихся из того же водовода. При использовании индивидуальных насосов для нагнетательных скважин их приемистость определяют индивидуально.
Дебиты скважин при добыче природного газа измеряют на групповых или централизованных газосборных пунктах с помощью расхо-
- 337 -
домеров разных конструкций, часто называемых дифманометрами, — поплавковыми, мембранными, сшгьфонными. Для разведочных скважин, не подключенных к газопроводу, а также для скважин с устьевым давлением, меньшим, чем давление в промысловом газопроводе после узла измерения дебита, часто используют метод критического истечения с использованием соответствующего диафрагмен- ного измерителя (ДИКТ).
При разработке многопластовых эксплуатационных объектов или объектов большой толщины большое значение имеет определение рассмотренных показателей раздельно по пластам и интервалам пласта. В добывающих и нагнетательных скважинах эту задачу решают, главным образом применяя аппарат для глубинной потокометрии и термометрии.
Вопросы техники, технологии контроля за рассмотренными показателями работы скважин и пластов в них, а также приемы интерпретации получаемых замеров излагаются в инструкциях по исследованию скважин и пластов.
Для каждого объекта с учетом характера изменчивости показателей работы скважин должна быть установлена периодичность их замеров таким образом, чтобы количество определений было достаточным для получения в результате их статистической обработки надежных средних значений за отчетные периоды времени (месяц, квартал).
6.6.4. Изучение границ залежей, связанных с фациальной
изменчивостью пластов и стратиграфическими несогласиями
Границы залежей можно проводить по линиям полного замещения коллекторов продуктивного горизонта на площади непроницаемыми породами или по линии выклинивания коллекторов.
Потерю горизонтом коллекторских свойств при сохранении его в разрезе называют замещением коллекторов, а соответствующую экранирующую границу — линией фациального замещения коллекторов или границей распространения коллекторов. Положение линии замещения коллекторов определяют по данным керна и промысловой геофизики о том, какими породами — проницаемыми или непроницаемыми — представлен пласт в каждой скважине.
При ограниченном числе скважин положение линии замещения может быть определено лишь приближенно. На плане расположения скважин одним знаком отмечаются скважины, в которых пласт представлен проницаемыми породами, другим знаком — скважины с непроницаемыми породами. Линия замещения на площади между этими скважинами проводится условно либо строго на половине расстояния между ними, либо немного дальше от скважины, в которой отмечается большая толщина пласта, и несколько ближе к скважине с меньшей его толщиной.
- 338 -
При выклинивании или размыве продуктивных отложений, сопровождающихся несогласным залеганием слоев, образуются линии выклинивания или размыва, ограничивающие площадь, за пределами которой пласт не отлагался или размыт.
Наличие выклинивания и размыва продуктивных отложений устанавливается по несогласному залеганию продуктивных и перекрывающих (подстилающих) отложений и выпадению из разрезов скважин продуктивного пласта.
Определение положения линий выклинивания или размыва возможно несколькими способами. Выбор способа зависит от объема исходных данных. При небольшом числе пробуренных скважин линии выклинивания и размыва проводятся условно посредине между каждой парой скважин, в одной из которых имеется продуктивный пласт, а в другой — отсутствует. Этот способ обычно применяют на стадии проектирования разработки по редкой сети разведочных скважин.
После разбуривания залежи эксплуатационными скважинами положение линии выклинивания можно уточнить по градиенту уменьшения толщины продуктивных отложений в направлении к линии выклинивания. Для этого используют карту общей толщины продуктивного горизонта в изолиниях, построенную по данным всех пробуренных скважин. Нулевая изопахита на этой карте соответствует линии выклинивания и считается границей залежи (или одного из ее пластов).
Положение линий выклинивания и размыва можно также уточнить путем построения серии профилей. Для этого перпендикулярно к уточняемой линии через пробуренные скважины проводится возможно большее число профилей В каждый профиль должно быть включено несколько скважин, расположенных в зоне распространения продуктивного пласта и в зоне его отсутствия. На профилях проводят линии, соответствующие положению кровли и подошвы продуктивного пласта. Смыкание кровли подстилающих и подошвы перекрывающих пласт отложений отмечает точку, в которой линия выклинивания или размыва пересекает профиль. Эти точки переносят на карту и, соединив их, получают в плане линию выклинивания или размыва.
6.6.5. Изучение положения ВНК в залежах с подошвенной водой
В пределах залежей насыщающие продуктивный пласт газ, нефть и вода располагаются по высоте в соответствии с действием гравитационных и молекулярно-поверхностных сил. В результате действия гравитационных сил верхнюю часть залежи заполняет газ, имеющий минимальную плотность, ниже располагается нефть, а еще ниже — вода. Однако молекулярно-поверхностные силы препятствуют гравитационному распределению газа и жидкостей в пористой среде. Это проявляется в том, что в продуктивных пластах содержится
- 339 -
определенное количество остаточной воды, а также в сложном распределении по разрезу газа, нефти и воды в приконтактных зонах пласта. На границе воды с нефтью вода, а на границе нефти с газом нефть под действием капиллярного давления в части капилляров поднимается выше уровня, соответствующего уровню гравитационного распределения. Значение капиллярного подъема h определяется уравнением:
где σв.н. — поверхностное натяжение на границе раздела нефти и воды;
θв.н. — краевой угол смачивания на той же границе;
ri — радиус капиллярной трубки;
g — ускорение свободного падения;
рви рн — плотность соответственно воды и нефти.
Исходя из формулы, можно отметить, что высота капиллярного подъема увеличивается:
• при уменьшении радиуса капилляров;
• при уменьшении разницы плотностей контактирующих фаз;
• при уменьшении краевого угла смачивания;
• при увеличении поверхностного натяжения на границе раздела двух фаз.
В результате четкие границы между газо-, нефте- и водонасыщенными частями пласта часто не образуются, и имеются так называемые переходные зоны. В пределах переходной зоны содержание нефти (газа) возрастает снизу вверх от нуля до предельного насыщения.
Толщина переходных зон на контакте нефть — вода в разных залежах меняется от нескольких сантиметров до десятков метров. Так, в верхнемеловых залежах Северного Кавказа на Эльдаровском, Бра- гунском, Малгобек-Вознесенском и других месторождениях, где нефтеносность связана с трещиноватыми известняками и плотность нефти мала, толщина переходной зоны не превышает нескольких сантиметров, а в Западной Сибири в залежах нефти, приуроченных к полимиктовым коллекторам, она достигает 12—15 м.
Переходные зоны от нефти к газу обычно имеют небольшую толщину. На рис. 112 показано распределение газа, нефти и воды в условном продуктивном пласте с предельной нефтегазонасыщен- ностью 80%. Здесь по характеру насыщенности можно выделить пять интервалов (снизу вверх): V — водоносная зона; IV — переходная зона от воды к нефти; III — нефтяная зона; II — переходная зона от нефти к газу; / — газоносная зона. Указанные особенности распределения газа, нефти и воды по разрезу создают сложности в определении границ залежей по нефтегазонасышенности пород — водонефтяного контакта (ВНК), газонефтяного контакта (ГНК), газоводяного контакта (ГВК).
Дата публикования: 2014-11-19; Прочитано: 1060 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!