![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Трансформатором називають статичний електромагнітний пристрій з двома або декількома обмотками, що використовує явище електромагнітної індукції для перетворення струмів і напруг однієї системи в струми і напруги іншої [4–6].
![]() |
Принцип дії, схеми заміщення і векторні діаграми трансформатора. Принцип дії трансформатора розглянемо на прикладі двообмоткового трансформатора стрижньової конструкції рис. 1.1. При подачі на первинну обмотку трансформатора синусоїдальної напруги u 1 = U 1 m sin wt по ній починає протікати змінний струм i 1, який при ненасиченому магнітопроводі можна також вважати синусоїдальним i 1 =
= І 1 m sin(w t – j1). Відставання за фазою струму i 1 від напруги u 1 на кут j1 обумовлене індуктивністю обмоток трансформатора.
Струм первинної обмотки трансформатора створює магніторушійну силу (МРС), діюче значення якої пропорційно величині струму і кількості витків первинної обмотки F 1 = I 1 w 1.
Магніторушійна сила F 1 створює в магнітопроводі трансформатора синусоїдальний магнітний потік Ф 1, синфазний з|із| МРС|. Основна частина|частка| магнітного потоку Ф 0 замикається по магнітопроводу і зчеплена як з|із| первинною, так і вторинної|повторної| обмотками. Інша частина|частка| магнітного потоку Ф 1 зчеплена лише з|із| витками первинної обмотки і називається потоком розсіяння Ф р1. Таким чином, Ф 1 = Ф 0 + Ф р1.
Синусоїдальні магнітні потоки Ф 0 і Ф р1 наводять в обмотках ЕРС|:
Е 1 = – w 1 (dФ 0/ dt), Е 2 = – w 2 (dФ 0/ dt), Е р1 = – w 1 (dФ р1/ dt).
Якщо коло|цеп| вторинної|повторної| обмотки замкнено, то струм|тік| вторинної|повторної| обмотки створює МРС| F 2 = I 2 w 2, яка спільно з МРС| первинної обмотки формує магнітний потік Ф 0 і потік розсіяння Ф р2, зчеплений тільки|лише| із вторинною|повторною| обмоткою і наведена в ній ЕРС| розсіяння дорівнює Е р2 = – (dФ р2/ dt). Оскільки|тому що| похідна від синусоїдальної залежності утворює косинусоїдальну залежність, то ЕРС| відстають по фазі від магнітних потоків на 90°ел|. Рівняння рівноваги напруг|напружень| первинної і вторинної|повторної| обмоток можна записати в комплексній формі
і
де – напруга на вторинній обмотці під навантаженням.
Оскільки величини ЕРС розсіяння пропорційні величинам струмів обмоток, то їх можна подати у вигляді падінь напруг і
, де х 1 і х 2 – індуктивні опори розсіяння первинної і вторинної обмоток відповідно.
Особливістю роботи трансформатора під навантаженням є|з'являється,являється| незначна| залежність величини магнітного потоку Ф0 від величини струму|току| навантаження, що обумовлено противофазністю| МРС| первинної і вторинної|повторної| обмоток, тобто і сума первинної і вторинної|повторної| МРС| дорівнює МРС| первинної обмотки в режимі холостого ходу трансформатора.
Таким чином, роботу однофазного трансформатора можна описати системою рівнянь:
;
; (11.1)
. (11.2)
Струм|тік| холостого ходу трансформатора можна подати|уявити| у вигляді двох складових , де
– активна складова струму|току| холостого ходу, обумовлена втратами в сталі трансформатора;
– намагнічувальний струм|тік| (I 0), який утворює магнітний потік трансформатора.
Величини ЕРС обмоток визначаються співвідношеннями:
E 1 = 4,44 w 1 fF 0 і E 2 = 4,44 w 2 fF 0,
де f – частота змінного струму|току| |почуваючої| мережі живлення|сіті|.
Цій системі рівнянь відповідає схема заміщення з електромагнітним зв’язком обмоток (рис. 11.2)
![]() |
Відношення|ставлення| ЕРС| первинної обмотки і ЕРС| вторинної|повторної| обмотки, яке дорівнює відношенню|ставленню| кількості витків цих обмоток, прийнято називати коефіцієнтом трансформації трансформатора E 1/ E 2 = w 1/ w 2 = k тр.
Знижувальні трансформатори (U 1> U 2) мають k тр>1,0, а підвищувальні (U 1 < U 2) мають k тр <1,0.
Якщо рівняння (11.1) помножити на k тр, а рівняння (11.2) розділити на w 1, то вийде система рівнянь приведеного трансформатора, у|в,біля| якого кількість витків вторинної|повторної| обмотки дорівнює кількості витків первинної обмотки, а значення параметрів приведеного трансформатора повинно забезпечувати такі ж енергетичні і фазові співвідношення, як і в реальному трансформаторі:
;
;
. (11.3)
З|із| рівняння (11.3) виходить, що при збільшенні навантаження трансформатора збільшується струм|тік| первинної обмотки, тому що|тому що| фаза струму|току|
мало відрізняється від фази
.
Величина ЕРС| вторинної|повторної| обмотки, приведена до витків первинної обмотки дорівнює ЕРС| первинної обмотки
.
З урахуванням|з врахуванням| цих обставин схема заміщення приведеного трансформатора може бути подана|уявлена| (рис. 11.3) з|із| електричним зв’язком первинного і вторинного|повторного| контурів.
Значення параметрів r¢ 2 і x¢ 2 у схемі заміщення (рис. 11.3) визначаються множенням реальних параметрів r 2 і x 2 на квадрат коефіцієнта трансформації ,
.
![]() |
Особливості режимів холостого ходу і нормального короткого замикання трансформаторів. Дослідження режимів холостого ходу (ХХ) і нормального короткого замикання (КЗ|) дозволяє визначити параметри намагнічувального контуру схеми заміщення, розрахувати величини втрат і номінальний ККД| трансформатора. З цією метою в режимі ХХ при розімкненому колі|цепі| вторинної|повторної| обмотки до первинної обмотки трансформатора підводиться номінальна величина напруги|напруження| U 1ном. Оскільки|тому що| величина струму|току| ХХ I 10 звичайно не перевищує 10% від величини номінального струму|току| первинної обмотки I 1ном, то втрати в міді первинної обмотки в режимі ХХ трансформатора не перевищують 1% від номінального рівня цих втрат і втратами в первинній обмотці нехтують. З цієї причини активна потужність, споживана з|із| мережі|сіті| трансформатором Р 0в режимі ХХ дорівнює номінальній потужності втрат в сталі магнітопровода Р ст. Таким чином
r 0 = U 1ном /(I 10cos j 0); x 0 = U 1ном / (І 10 sin j 0);
j 0 = arccos P 0 / (U 1ном I 10),
де j 0 – кут|ріг,куток| зсуву фази струму|току| щодо|відносно| фази напруги|напруження|
.
У режимі нормального КЗ| ланцюг|цеп| вторинної|повторної| обмотки трансформатора замикається накоротко|, а до первинної обмотки трансформатора підводиться знижена напруга|напруження| U 1 k , при якій по обмотках протікають номінальні струми|токи| I 1ном і I 2ном. Звичайно напруга|напруження| U 1 k не перевищує 10% рівня номінальної напруги|напруження|, а оскільки|тому що| втрати в сталі магнітопровода Р стпропорційні|пропорціональні| квадрату напруги|напруження| на первинній обмотці, то в режимі КЗ| трансформатора ними нехтують.
Таким чином, активна потужність, споживана з|із| мережі|сіті| в режимі КЗ| трансформатора, визначає номінальну величину втрат в міді первинної і вторинної|повторної| обмоток Р м:
;
.
Таким чином, номінальний ККД| трансформатора визначається співвідношенням
.
Зовнішня характеристика трансформатора. З|із| наведеної схеми заміщення трансформатора (див. рис. 11.3) виходить, що
.
Модуль вектора падіння напруги|напруження| на трансформаторі можна також одержати|отримати|, скориставшись виразом|вираженням|:
,
де ;
;
– коефіцієнт навантаження.
Вигляд зовнішньої характеристики трансформатора визначається не тільки|не лише| величиной| навантаження, але і її характером|вдачею|. При збільшенні струму|току| навантаження вихідна напруга|напруження| трансформатора зменшується при активному і активно-індуктивному і збільшується при ємнісному і активно-ємнісному характерах|вдачах| |ємкості| навантаження.
![]() |
Робочі характеристики трансформатора є залежностями коефіцієнта корисної дії, коефіцієнта потужності, струму|току| в первинному ланцюзі|цепі| і напруги|напруження| на навантаженні від струму|току| в навантаженні. Всі ці залежності розраховуються на підставі схеми заміщення (рис. 11.3 ). Характерний|вдача| вигляд робочих характеристик показаний на рис. 11.4.
Дата публикования: 2014-11-19; Прочитано: 932 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!