![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
Електромагнітне поле володіє енергією. Ця енергія може перетворюватися в інші види енергії. З’ясуємо яким чином вектори поля
,
,
,
визначають енергію електромагнітного поля.
Таблиця 4.1 - Енергетичні величини в теорії електромагнетизму
| Назва | Позначення | Од. вимірювання (Сі) |
| 1. Енергія електромагнітного поля |
| Джоуль (Дж) |
| 2. Електрична енергія |
| Джоуль (Дж) |
| 3. Магнітна енергія |
| Джоуль (Дж) |
| 4. Потужність |
| Ватт (Вт) |
| 5. Потужність поглинання (потужність втрат) |
| Ватт (Вт) |
| 6. Потужність сторонніх джерел (потужність джерел) |
| Ватт (Вт) |
| 7. Густина енергії електромагнітного поля |
|
|
| 8. Густина електричної енергії |
|
|
| 9. Густина магнітної енергії |
|
|
| 10. Густина потужності |
|
|
| 11. Густина потужності поглинання |
|
|
| 12. Густина потужності сторонніх джерел |
|
|
| 13. Потік потужності |
| Вт |
| 14. Густина потоку потужності |
|
|
Енергія електромагнітного поля ЕЕМП, яка знаходиться всередині об’єму V змінюється. Факторами зміни енергії являються:
а) перетворення частини ЕЕМП в інші види енергії;
б) робота сторонніх джерел, що можуть як збільшувати запас енергії, так і зменшувати його;
в) обмін енергії між виділеним об’ємом V і навколишніми його областями простору за рахунок процесу, який називається випромінюванням.
Розглянемо перший фактор. З фізики відомо, що при наявності струму в середовищі виділяється тепло. За законом Джоуля-Лєнца можна записати
.
Він визначає потужність джоулевих втрат. Застосовуючи цю формулу до нескінченного малого циліндра об’ємом
, отримаємо
.
Інтегруючи цей вираз, отримаємо
. (4.1)
Підінтегральний вираз

являється густиною потужності, тобто потужність віднесена до одиниці об’єму
. (4.2)
Отриманий вираз потужності (4.1) і її густини (4.2) мають універсальний характер. Вони справедливі не тільки при розрахунку джоулевих втрат, але і в усіх випадках, коли розглядаються струми.
В залежності від напрямку руху зарядів величина густини потужності
може бути як позитивної так і негативної. Заряди можуть прискорюватися полем. При цьому
,
і енергія у поля відбирається. Очевидно, що
, якщо
і
антипаралельні. Це в тому випадку, якщо рух зарядів проти поля створюється якимось не електромагнітним “стороннім” процесом, який віддає свою енергію полю, яке гальмує заряди.
Розглянемо другий фактор. Дії сторонніх джерел змінюють матеріальне рівняння – закон Ома в диференційній формі
:
. (4.3)
Визначимо, використовуючи (4.3), напруженість електричного поля
. Поділивши цей вираз на
– питому провідність, отримаємо:
. (4.4)
Помноживши праву і ліву частину (4.4) на
– об’ємну густину струму провідності, отримаємо густину потужності р:
. (4.5)
Рівність (4.5) можна записати у вигляді
, (4.6)
де
. (4.7)
Густина потужності втрат
в (4.7) характеризує поглинання, втрати електромагнітного процесу (перетворення в тепло, джоулева потужність). Критерій придатності:
(поле віддає енергію), якщо кут між
і
менше
.
Густина сторонніх джерел характеризує процес перетворення енергії різних видів (наприклад, хімічної, механічної) в електромагнітну. Критерій придатності:
(поле набуває енергії), якщо кут між
і
більше
(скалярний добуток менший нуля). Виникають так звані “негативні втрати”. Найбільш ефективне віддання енергії ЕМП від сторонніх джерел, коли
і
протилежно направлені.
Сторонні сили, як правило локалізовані. Якщо, наприклад, вони зосередженні в деякій області
то згідно рівності (4.3)
в
і
поза
. Область
– називається областю джерела сторонніх сил. Проінтегрувавши по об’єму V вираз (4.7), отримаємо повну потужність
.
Цю рівність можна записати у вигляді
, де
(4.8)
Третій фактор буде розглянутий в п. 4.2.
Дата публикования: 2014-11-03; Прочитано: 587 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
