Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Промежутков



Для магнитных систем электрических аппаратов, когда учиты­ваются потоки рассеяния и полные потоки воздушного зазора, су­щественным является определение магнитных проводимостей воз­душных путей — проводимостей зазора и рассеяния. Причем точ­ность расчета параметров электрического аппарата с воздушным за­зором во многом определяется точностью расчета проводимостей воз душных путей. Магнитное поле вблизи воздушного зазора для пло­ской магнитной системы трехмерно и имеет очень сложную форму. На рис.2.1 показано поле между полюсом и плоскостью для различных координат поля выпучивания.

Магнитные проводимости этого объемного поля или поля между двумя полюсами можно рассчитать тремя методами. Первый метод, наиболее достоверный, основан на экспериментальном исследова­нии распределения объемного поля и магнитных напряжений между полюсами конечных размеров а и в при различных воздушных зазорах и формах полюсов. Так как поле не плоскопараллельное, то на боковые удельные проводимости оказывают влияние ширина или диаметр полюса.

 
 


Рис.2.1. К расчету магнитных проводимостей для

расположе­ния полюс — плоскость

Второй метод основан на замене сложного объемного поля воз­душного зазора (рис.) однородным полем, не имеющим поля выпучивания. Для этой цели, при тех же значениях воздушного зазора и максимальной индукции в нем, реальные размеры полюса а и б заменяются расчетными размерами полюсов ар и бр (рис.). Этот метод позволяет определить полное объемное поле воздушного зазора по двум взаимно перпендикулярным плоско-параллельным полям. Суть третьего метода сводится к тому, что объемное поле вокруг воздушного зазора заменяется суммой отдельных полей, имеющих простые геометрические формы. Применение того или иного метода расчета вызывается формой магнитной цепи, известными пределами координат поля выпучи­вания и желаемой точностью расчета. Рассмотрим эти методы.





Дата публикования: 2014-11-04; Прочитано: 881 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...