Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Если распределения для контрольной группы и для фоновых значений в опытной группе более или менее симметричны, то значения, получаемые в опытной группе после воздействия, группируются, как уже говорилось, больше в левой части кривой. Это говорит о том, что после употребления марихуаны выявляется тенденция к ухудшению показателей у большого числа испытуемых.
Для того чтобы выразить подобные тенденции количественно, используют три вида показателей моду, медиану и среднюю.
1. Мода (Mo) — это самый простой из всех трех показателей. Она соответствует либо наиболее частому значению, либо среднему значению класса с наибольшей частотой. Так, в нашем примере для экспериментальной группы мода для фона будет равна 15 (этот результат встречается четыре раза и находится в середине класса 14-15-16), а после воздействия — 9 (середина класса 8-9-10).
Мода используется редко и главным образом для того, чтобы дать общее представление о распределении. В некоторых случаях у распределения могут быть две моды; тогда говорят о бимодальном распределении. Такая картина указывает на то, что в данном совокупности имеются две относительно самостоятельные группы (см., например, данные Триона, приведенные в документе 3.5).
2. Медиана (Me) соответствует центральному значению в последовательном ряду всех полученных значений. Так, для фона в экспериментальной группе, где мы имеем ряд
10, 11, 12, 13, 14, 14, 15, 15, 15, 15, 17, 17, 19, 20, 21;
медиана соответствует 8-му значению, т. е. 15. Для результатов воздействия в экспериментальной группе она равна 10.
В случае если число данных n,четное, медиана равна средней арифметической между значениями, находящимися в ряду на n /2-м и n /2 + 1-м местах. Так, для результатов воздействия для восьми юношей опытной группы медиана располагается между значениями, находящимися на 4-м (8/2 = 4) и 5-м местах в ряду. Если выписать весь ряд для этих данных, а именно
7, 8, 9, 11, 12, 13, 14, 16;
то окажется, что медиана соответствует (11 + 12)/2 = 11,5 (видно, что медиана не соответствует здесь ни одному из полученных значений).
3. Средняя арифметическая () (далее просто «средняя») — это наиболее часто используемый показатель центральной тенденции. Ее применяют, в частности, в расчетах, необходимых для описания распределения и для его дальнейшего анализа. Ее вычисляют, разделив сумму всех значений данных на число этих данных. Так, для нашей опытной группы она составит 15,2 (228/15) для фона и 11,3 (169/15) для результатов воздействия.
Если теперь отметить все эти три параметра на каждой из кривых для экспериментальной группы, то будет видно, что при нормальном распределении они более или менее совпадают, а при асимметричном распределении — нет.
Прежде чем идти дальше, полезно будет вычислить все эти показатели для обеих распределений контрольной группы — они пригодятся нам в дальнейшем:
Дата публикования: 2014-11-04; Прочитано: 527 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!