![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Кросс-табуляция является простой формой анализа, широко используемой в генерации отчетов средствами систем оперативной аналитической обработки (OLAP). Двумерная кросс-таблица представляет собой матрицу значений, каждая ячейка которой лежит на пересечении значений атрибутов. Расширение идеи кросс-табличного представления на случай гиперкубической информационной модели является, как уже говорилось, основой многомерного анализа данных, поэтому эта группа методов может рассматриваться как симбиоз многомерного оперативного анализа и интеллектуального анализа данных.
Кросс-табличная визуализация является наиболее простым воплощением идеи поиска информации в данных методом кросс-табуляции. Строго говоря, этот метод не совсем подходит под отмеченное свойство ИАД - переход инициативы к системе в стадии свободного поиска. На самом деле кросс-табличная визуализация является частью функциональности OLAP. Здесь система только предоставляет матрицу показателей, в которой аналитик может увидеть закономерность. Но само предоставление такой кросс-таблицы имеет целью поиск "шаблонов информации" в данных для поддержки принятия решений, то есть удовлетворяет приведенному определению ИАД. Поэтому неслучайно, что множество авторов все же относит кросс-табличную визуализацию к методам ИАД.
К методам ИАД группы кросс-табуляции относится также использование байесовских сетей (Bayesian Networks), в основе которых лежит теорема Байеса теории вероятностей для определения апостериорных вероятностей составляющих полную группу попарно несовместных событий по их априорным вероятностям. Байесовские сети активно использовались для формализации знаний экспертов в экспертных системах, но с недавних пор стали применяться в ИАД для извлечения знаний из данных.
Можно отметить четыре достоинства байесовских сетей как средства ИАД:
· поскольку в модели определяются зависимости между всеми переменными, легко обрабатываются ситуации, когда значения некоторых переменных неизвестны;
· построенные байесовские сети просто интерпретируются и позволяют на этапе прогностического моделирования легко производить анализ по сценарию "что - если";
· подход позволяет естественным образом совмещать закономерности, выведенные из данных, и фоновые знания, полученные в явном виде (например, от экспертов);
· использование байесовских сетей позволяет избежать проблемы переподгонки (overfitting), то есть избыточного усложнения модели, чем страдают многие методы (например, деревья решений и индукция правил) при слишком буквальном следовании распределению зашумленных данных.
Байесовские сети предлагают простой наглядный подход ИАД и широко используются на практике.
Дата публикования: 2014-11-03; Прочитано: 1978 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!