Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Если непосредственное измерение линии на местности по каким-либо причинам невозможно, то применяют различные косвенные способы определения расстояний. Наиболее часто в практике линейных измерений для решения этой задачи используют метод прямой засечки. Для определения длины линии S необходимо, как видно из рис.52, измерить на местности горизонтальное проложение базиса в (дважды, в прямом и обратном направлениях) и прилегающие к нему углы α и β. Тогда искомая сторона S определится по теореме синусов:
S = в sinβ/sin(α+β).
Для контроля измерений и вычислений рекомендуется разбить еще один базис в 1 и после измерений углов α1 и β1 вычислить контрольное значение S 1.
Рис. 52. Определение недоступного расстояния
Если есть возможность, то рекомендуется для контроля измерений углов в треугольниках измерить также и углы γ и γ1, что позволит определить угловую невязку и оценить надежность угловых измерений. .
Если относительная погрешность
,
где , то среднее
из двух измерений принимается за окончательное значение определяемой линии. Желательно, чтобы каждый из базисов был не менее 0,6 длины определяемой линии, а горизонтальные углы не выходили за пределы 30−150°.
В некоторых случаях для определения длины линии строят на местности два равных друг другу прямоугольных треугольника с взаимно параллельными сторонами, причем в качестве стороны одного из них берут недоступный для измерения отрезок. Как видно из рис. 52, длина недоступной линии AB равна длине линии A'B', которую уже можно измерить непосредственно мерной лентой в прямом и обратном направлениях и получить величину недоступного расстояния.
Дата публикования: 2014-11-04; Прочитано: 4147 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!