![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
а) Назначение и принцип действия. В настоящее время начинают широко применяться высоковольтные подстанции без выключателей на питающей линии. Это позволяет удешевить и упростить оборудование при сохранении высокой надежности. Для замены выключателей на стороне высокого напряжения используются короткозамыкатели и отделители.
Короткозамыкатель — это быстродействующий контактный аппарат, с помощью которого по сигналу релейной защиты создается искусственное КЗ сети.
Отделитель представляет собой разъединитель, который быстро отключает обесточенную цепь после подачи команды на его привод. Если в обычном разъединителе скорость отключения мала, то в отделителе процесс отключения длится 0,5—1 с.
В качестве примера применения короткозамыкателей и отделителей на рис. 19.9 приведена схема питания от одной линии двух трансформаторных групп 77 и Т2. В схему кроме быстродействующих короткозамыкателей QK1 и QK2, введены отделители Q1 и Q2, которые при нормальном режиме работы замкнуты. Допустим, вследствие ухудшения изоляции трансформатора 77 внутри него возникают электрические разряды, которые приводят к разложению масла и выделению газа. Газовые пузырьки, поднимаясь вверх, приводят к срабатыванию газового реле. По сигналу этого реле включается короткозамыкатель и в цепи возникает искусственное КЗ. Под действием тока КЗ срабатывает выключатель защиты QF1
Рис. 19.9. Схема коммутации с отделителями и короткозамыкателями
и обе группы 77 и Т2 обесточиваются. С помощью релейной защиты трансформатора 77 отключается также выключатель QF2, после чего с некоторой выдержкой отключается отделитель Q1. Затем, так как режим искусственного КЗ оказался отключенным, снова включается выключатель QF1. Если до аварии выключатель QF4 был отключен, тс после включения выключателя QFJ он может быть включен. При этом будет восстановлено питание потребителей на шинах 10 кВ первой трансформаторной группы.
Таким образом, в этой схеме удается не ставить выключатели на стороне 220 кВ трансформаторов Т1 и Т2. Однако для надежной работы необходима четкая последовательность в работе короткозамыкателей, выключателей и отделителей. Иначе возможны такие тяжелые аварийные случаи, как отключение тока КЗ отделителями и др.
Эффективность такой схемы тем выше, чем больше номинальное напряжение сети. Указанный эффект достигается за счет отсутствия выключателей на стороне 35—220 кВ, а также аккумуляторных батарей и компрессорных установок. Уменьшается площадь подстанции. Создается возможность приближения напряжения 35—220 кВ непосредственно к потребителям. Сокращаются сроки строительства.
Применение отделителей и короткозамыкателей позволяет удешевить стоимость подстанции на 40—50 % и практически сохранить ту же надежность.
б) Конструкция короткозамыкателей и отделителей.
На рис. 19.10 представлен короткозамыкатель КЗ-110 на напряжение ПО кВ. На стальной коробке 1 установлен опорный изолятор 2. Вверху опорного изолятора расположен неподвижный контакт 3, находящийся под высоким напряжением. Подвижный заземленный контакт — нож 4 укреплен на валу 5 привода короткозамыкателя. Для создания необходимой прочности нож 4 имеет ребро жесткости 6. Основание 1 изолировано от земли и присоединяется к одному концу первичной обмотки трансформатора тока, второй конец которой заземлен (рис. 19.12). На вал 5 действует пружина привода, которая заводится в отключенном состоянии. Для включения подается команда на электромагнит привода, который освобождает защелку механизма. Под действием пружины нож перемещается в вертикальной плоскости вверх и заземляет контакт 3. Время включения такого короткозамыкателя 0,15—0,25 с.
В основу конструкции отделителя ОД-110У на ПО кВ (рис. 19.11) положен двухколонковый разъединитель с вращением ножей 1 в горизонтальной плоскости. Приведение в движение колонок 2 осуществляется пружинным приводом 3 с электромагнитным управлением. Во вклю-
Рис. 19.10. Короткозамыкатель Рис. 19.11. Отделитель
ченном положении пружины привода заведены. При подаче команды пружина освобождается и контакты расходятся за время 0,4—0,5 с.
Схема релейной защиты при использовании отделителей и короткозамыкателей приведена на рис. 19.12. Короткозамыкатель 1 имеет пружинный привод 4. Механизм расцепления 6 привода может срабатывать от реле максимального тока мгновенного действия 8 и независимого расцепителя 10. От трансформатора тока 3 питается электромагнит 9 расцепителя отделителя 2. Отделитель отключается под действием пружины 5. При нормальной работе подстанции отделитель 2 включен, а короткозамыкатель / выключен. При внутреннем повреждении трансформатора срабатывает либо реле дифференциальной защиты КА, либо газовое реле Вг. Промежуточное реле при этом включает электромагнит независимого расцепителя 10. В результате короткозамыкатель 1 включается и через трансформатор тока 3 течет ток КЗ. Электромагнит 9 включается, и его якорь // заводит пружину 12. Схема будет находиться в таком состоянии до тех пор, пока от своей защиты не отключится выключатель, установленный на стороне высокого напряжения 220 кВ (выключатель QF1 на схеме рис. 19.9). После отключения этого выключателя ток через короткозамыкатель /ив обмотке трансформатора 3 прекратится. Электромагнит 9 обесточится, его якорь
Рис. 19.12. Схема релейной защиты при использовании отделителей и короткозамыкателей
Рис. 19.13. Элегазовый короткозамыкатель
под действием возвратной пружины освобождает защелку 7, и отделитель 2 размыкается. Теперь выключатель на питающем конце линии может включаться вновь. Такая схема применяется только тогда, когда выключатель срабатывает (отключается) от замедленно действующей защиты. При быстродействующей защите линии применяются другие схемы.
Описанные выше конструкции короткозамыкателей и отделителей имеют большое время срабатывания (0,5—1 с), что удовлетворяет современные требования к энергосистемам. В перспективе это время должно быть уменьшено до 0,08—0,12 с при напряжениях до 220 кВ. Рассмотренные аппараты не обеспечивают также достаточную надежность работы при гололеде и сильных морозах. Для уменьшения времени включения замыкателя и времени отключения отдели геля необходимо сокращать междуконтактное изоляционное расстояние путем применения элегазозой или вакуумной среды. Более перспективным является использование элегазовых аппаратов, так как удается получить необходимую прочность при одном разрыве. Для вакуумных аппаратов необходимо включение нескольких разрывов последовательно.
На рис. 19.13 представлен элегазовый короткозамыкатель на напряжение 110 кВ. В фарфоровом цилиндре 1 установлены контакты 2 и 3. Давление элегаза в цилиндре составляет 0,3 МПа. Привод подвижного контакта 3 осуществляется тягой 5. Стальной сильфон 4 обеспечивает герметизацию полости цилиндра 1. Расстояние между контактами 85—НО мм. Время срабатывания в 4—5 раз меньше, чем у существующих короткозамыкателей открытого типа. Короткозамыкатель защищен от климатических воздействий окружающей среды.
в) Выбор разъединителей. Номинальное напряжение разъединителя должно соответствовать номинальному напряжению высоковольтной сети.
Наибольший длительный ток нагрузки потребителя не должен превышать номинальное значение длительного тока разъединителя.
Ударный ток КЗ в месте установки разъединителя не должен превышать допустимую амплитуду ударного тока КЗ разъединителя.
Ток термической стойкости в течение времени
, гарантированный заводом-изготовителем, и ток КЗ
, протекающий через разъединитель в течение времени
, должны быть связаны соотношением
Внешние условия работы разъединителя должны соответствовать реальным условиям эксплуатации аппарата (скорость ветра, температура, гололед).
г) Выбор короткозамыкателей и отделителей. Номинальное напряжение короткозамыкателя должно соответствовать номинальному значению напряжения сети.
Динамическая и термическая стойкости короткозамыкателя должны соответствовать току КЗ в месте его установки.
Время включения короткозамыкателя должно соответствовать требованиям схемы автоматики.
Номинальные данные по току и напряжению отделителя выбираются так же, как и для разъединителя. Кроме того, время отключения должно соответствовать требованиям схемы автоматики.
Глава двадцатая. Реакторы
20.1. Общие сведения
Реактором называют статическое электромагнитное устройство, предназначенное для использования его индуктивности в электрической цепи. На э. п. с. переменного и постоянного тока и на тепловозах широко применяют реакторы: сглаживающие — для сглаживания пульсаций выпрямленного тока; переходные — для переключения выводов трансформатора; делительные — для равномерного распределения тока нагрузки между параллельно включенными вентилями; токоограничивающие — для ограничения тока короткого замыкания; помехоподавления — для подавления радиопомех, возникающих при работе электрических машин и аппаратов; индуктивные шунты — для распределения при переходных процессах тока между обмотками возбуждения тяговых двигателей и включенными параллельно им резисторами и пр.
20.2. Конструкция реакторов
Наиболее распространены бетонные реакторы. На рис. 20 3 представлен трехфазный комплект таких реакторов. Из многожильного провода / соответствующего сечения намотаны катушки реакторов Л, В, С. Заливкой в специальные формы получаются бетонные вертикальные стойки — колонны 2, которые скрепляют между собой отдельные витки катушки Торцы колонн имеют шпильки с изоляторами 3, 4.
Для получения необходимой прочности электрической изоляции после затвердевания бетона реактор подвергают интенсивной сушке под вакуумом и пропитке влагостойким изоляционным лаком.
Рис. 20.1. Трехфазный комплект реакторов
Рис. 20 2. Изменение во времени электродинамических усилий, действующих между реакторами
Между отдельными витками в ряду и между рядами выдерживается значительный зазор (3,5 -f- 4,5) -10~2 м, что улучшает охлаждение отдельных витков и повышает электрическую прочность изоляции.
При больших номинальных токах (более 400 А) применяется несколько параллельных ветвей. Для равномерного распределения тока по ветвям применяется транспозиция витков. Все витки ветвей должны быть одинаково расположены относительно оси реактора.
В качестве обмоточного провода используется многожильный медный или алюминиевый кабель большого сечения. Кабель покрывается несколькими слоями кабельной бумаги толщиной 0,12-10-3 м и хлопчатобумажной оплеткой. Общая толщина изоляции примерно 1,5-10-3 м. Максимальная допустимая температура при длительном режиме не выше 105, при КЗ — не выше 250 °С.
Охлаждение реакторов, как правило, естественное.
В трехфазном комплекте (рис. 20.1) наибольшему нагреву подвергается верхний реактор, поскольку подходящий снизу воздух уже подогрет реакторами, расположенными ниже. Ввиду выделения реактором большой мощности в распределительном устройстве должны быть предусмотрены специальные каналы для охлаждающего воздуха, особенно при больших токах.
Мощное магнитное поле реактора замыкается вокруг обмотки. Все ферромагнитные тела в этом поле создают дополнительные активные потери мощности и могут нагреваться до очень высоких температур. Для уменьшения этих потерь все ферромагнитные детали (балки, арматура железобетонных стен) удаляются от обмотки на расстояние, не меньшее ее внешнего радиуса.
Расстояние между реакторами определяется высотой опорных изоляторов. Так как при напряжении 6—10 кВ высота этих изоляторов мала, то при больших токах в реакторах возникают электродинамические силы, которые могут разрушить изоляторы, работающие и на сжатие, и на разрыв. Изменение электродинамического усилия, действующего на изоляторы, во времени показано па рис. 20.2.
В наиболее тяжелых условиях работают изоляторы верхнего реактора. Для уменьшения разрывающего усилия, действующего на изоляторы, изменяют направление поля среднего реактора на обратное. При этом большое отталкивающее усилие становится притягивающим. Изменение направления поля среднего реактора достигается изменением направления его намотки относительно направления намотки крайних реакторов. Реакторы, предназначенные для вертикальной установки в комплектах, имеют маркировку В (верхний), С (средний) и Н (нижний).
Под воздействием массы реактора изоляторы сжимаются, а растягивающая сила уменьшается.
В реакторах на большие токи электродинамические силы при вертикальной установке в аварийном режиме столь велики, что изоляторы не могут обеспечить необходимую электродинамическую стойкость. В этих случаях приходится прибегать к горизонтальной установке реакторов. Расстояние между осями может быть выбрано достаточно большим. Бетонные реакторы применяются в закрытых распределительных устройствах при напряжении не выше 35 кВ. Недостатком их являются большие габаритные размеры и массы. Ведутся работы по уменьшению массы и габаритных размеров таких реакторов за счет применения современных изоляционных материалов.
20.3. Сдвоенные реакторы
а) Принцип работы. Стремление к уменьшению потерь напряжения на реакторе в номинальном режиме, к упрощению и удешевлению распределительных устройств привело к созданию сдвоенных реакторов. При обычных реакторах (рис. 20.3, а) каждая отходящая линия имеет свой реактор, рассчитанный на номинальный ток линии. Каждая трехфазная группа реакторов размещается в специальной ячейке распредустройства.
В сдвоенных реакторах (рис. 20.3, б) реакторы соседних ветвей сближены так, что между ними существует сильная магнитная связь. Совмещение в одном реакторе двух уменьшает габариты аппарата, удешевляет и упрощает распредустройство.
Рис. 20.3. Включение одинарных и сдвоенных реакторов
В номинальном режиме магнитные поля реакторов направлены встречно и оказывают размагничивающее действие друг на друга. В результате индуктивное сопротивление ветви падает. Соответственно уменьшается падение напряжения на реакторе.
Чем больше коэффициент связи, тем меньше падение напряжения в ветви. С точки зрения уменьшения падения напряжения в номинальном режиме желательно увеличение коэффициента связи k.
Для увеличения коэффициента связи реакторы должны быть возможно ближе друг к другу.
При КЗ в одной из ветвей падение напряжения на реакторе в основном определяется ее сопротивлением Хр,в. Влияние соседней ветви, обтекаемой номинальным током, мало, так как размагничивающее действие этой ветви незначительно.
В результате напряжение на первой ветви реактора возрастает и может достигнуть удвоенного значения.
При одновременном КЗ в обоих отходящих от реактора ветвях между ними возникают большие электродинамические силы. Это происходит из-за того, что, во-первых, реакторы близко расположены друг к другу и, во-вторых, возрастает ток КЗ, так как падает реактивное сопротивление деталей.
Для ограничения перенапряжений и электродинамических сил коэффициент связи берется в пределах от 0,3 до 0,5.
б) Конструкция и основные параметры сдвоенного реактора. Исследования показали, что бетонные сдвоенные реакторы без применения специальных мер подвержены разрушению при одновременном КЗ в обеих ветвях. Увеличение электродинамической стойкости достигается в сборной конструкции. На рис 20.4, а показана в разрезе левая половина такого реактора. Стяжка реактора осуществляется с помощью металлических стержней 1 и стержней 2 из изоляционного материала. Катушка реактора уложена на изоляционных прокладках 3.
Рис. 20.4. Конструкция сдвоенного реактора
Векторы, помеченные Ра, обозначают силу взаимодействия витка с нижней частью реактора. Векторы, помеченные Рв, — силы, действующие на виток со стороны верхней части реактора. Векторы без пометки являются результирующей силой.
Наибольшая отталкивающая сила действует на витки рядов 4 и 5, расположенные близко друг к другу. Для получения необходимой электродинамической стойкости близлежащие ряды ветвей реактора бандажируются стеклянной лентой, как это показано на рис. 20.4, в.
Для снижения возможности одновременного КЗ обе ветви реактора не должны проходить близко друг к другу. Основные параметры сдвоенного реактора:
1) номинальный длительный ток каждой ветви;
2) индуктивное сопротивление (в процентах) одной ветви (при отсутствии тока в другой)
3) коэффициент связи
4) электродинамическая стойкость каждой ветви, определяется усилиями, возникающими между витками каждой ветви и между ветвями соседних фаз (при двух- и трехфазных КЗ). При одновременном КЗ на обеих ветвях одного реактора возникают усилия, разрывающие реактор, так как токи в ветвях направлены встречно. Обычно динамическая стойкость при таких повреждениях в 2—3 раза меньше, чем при КЗ в одной ветви;
5) термическая стойкость одной ветви.
21. РАЗРЯДНИКИ
21.1.Общие сведения
При работе электрических установок возникают напряжения, которые могут значительно превышать номинальные значения (перенапряжения). Эти перенапряжения могут пробить электрическую изоляцию элементов оборудования и вывести установку из строя. Чтобы избежать пробоя электрической изоляции, она должна выдерживать эти перенапряжения, однако габаритные размеры оборудования получаются чрезмерно большими, так как перенапряжения могут быть в 6-8 раз больше номинального напряжения. С целью облегчения изоляции возникающие перенапряжения ограничивают с помощью разрядников и изоляцию оборудования выбирают по этому ограниченному значению перенапряжений. Возникающие перенапряжения делят на две группы: внутренние (коммутационные) и атмосферные. Первые возникают при коммутации электрических цепей (катушек индуктивностей, конденсаторов, длинных линий), дуговых замыканиях на землю и других процессах. Они характеризуются относительно низкой частотой воздействующего напряжения (до 1000 Гц) и длительностью воздействия до 1 с. Вторые возникают при воздействии атмосферного электричества, имеют импульсный характер воздействующих напряжений и малую длительность (десятки микросекунд). Электрическая прочность изоляции при импульсах зависит от формы импульса, его амплитуды. Зависимость максимального напряжения импульса от времени разряда называется вольт-секундной характеристикой. Для изоляции с неоднородным электрическим полем характерна резко падающая вольт-секундная характеристика. При равномерном поле вольт-секундная характеристика пологая и идет почти параллельно оси времени.
Рис. 21.1.1. Согласование характеристик разрядника и защищаемого оборудования
Основным элементом разрядника является искровой промежуток. Вольт-секундная характеристика этого промежутка (кривая 1 на рис.1) должна лежать ниже вольт-секундной характеристики защищаемого оборудования (кривая 2). При появлении перенапряжения промежуток должен пробиться раньше, чем изоляция защищаемого оборудования. После пробоя линия заземляется через сопротивление разрядника. При этом напряжение на линии определяется током , проходящим через разрядник, сопротивлениями разрядника и заземления
. Чем меньше эти сопротивления, тем эффективнее ограничиваются перенапряжения, т.е. больше разница между возможным (кривая 4) и ограниченным разрядником перенапряжением (кривая 3). Во время пробоя через разрядник протекает импульс тока.
Напряжение на разряднике при протекании импульса тока данного значения и формы называется остающимся напряжением. Чем меньше это напряжение, тем лучше качество разрядника. После прохождения импульса тока искровой промежуток оказывается ионизированным и легко пробивается номинальным фазным напряжением. Возникает КЗ на землю, при котором через разрядник протекает ток промышленной частоты, который называется сопровождающим. Сопровождающий ток может изменяться в широких пределах. Чтобы избежать выключения оборудования от релейной защиты, этот ток должен быть отключен разрядником в возможно малое время (около полупериода промышленной частоты).
К разрядникам предъявляются следующие требования.
1.Вольт-секундная характеристика разрядника должна идти ниже характеристики защищаемого объекта и должна быть пологой.
2.Искровой промежуток разрядника должен иметь определенную гарантированную электрическую прочность при промышленной частоте (50 Гц) и при импульсах.
3.Остающееся напряжение на разряднике, характеризующее его ограничивающую способность, не должно достигать опасных для изоляции оборудования значений.
4.Сопровождающий ток частотой 50 Гц должен отключаться за минимальное время.
5.Разрядник должен допускать большое число срабатываний без осмотра и ремонта.
. Рис.21.1.2 Обозначение разрядников
На электрических принципиальных схемах в России разрядники обозначаются согласно ГОСТ 2.727--68.
1. Общее обозначение разрядника
2. Разрядник трубчатый
3. Разрядник вентильный и магнитовентильный
4. ОПН
Промышленность выпускает вентильные разрядники серий РН, РВН, РНК, РВО, РВС, РВТ, РВМГ, РВРД, РВМ, РВМА, РМВУ и трубчатые.
Разрядник РН - низкого напряжения, предназначен для защиты от атмосферных перенапряжений изоляции электрооборудования напряжением 0,5 кВ.
Разрядник РВН - вентильный, для защиты от атмосферных перенапряжений изоляции электрооборудования.
Разрядник РНК предназначен для защиты устройств контроля изоляции вводов высокого напряжения трансформаторов.
Разрядник РВРД - вентильный, с растягивающейся дугой, предназначен для защиты изоляции электрических машин от атмосферных и кратковременных внутренних перенапряжений.
Разрядник РМВУ - вентильный, магнитный, униполярный, предназначен для защиты от перенапряжений изоляции тягового электрооборудования в установках постоянного тока.
Разрядник РА - серии А, предназначен для защиты от перенапряжений обмоток возбуждения крупных синхронных машин (турбогенераторов, гидрогенераторов и компенсаторов) с номинальным током возбуждения до 3000 А.
Разрядник РВО - вентильный облегченной конструкции; разрядник РВС - вентильный станционный; разрядник РВТ - вентильный, токоограничивающий; разрядник PC - вентильный для защиты электроустановок сельскохозяйственного назначения; разрядники серии РВМ, РВМГ, РВМА, РВМК - вентильные с магнитным гашением дуги, модификации Г и А, комбинированные, предназначены для защиты от атмосферных и кратковременных внутренних перенапряжений (в пределах пропускной способности разрядников) изоляции оборудования электрических станций и подстанций переменного тока номинальным напряжением 15-500 кВ.
Трубчатые разрядники РТВ и РТФ - винипластовые или фибробакелитовые, предназначены для защиты от атмосферных перенапряжений изоляции линий электропередачи и с другими средствами защиты для защиты изоляции электрооборудования станций и подстанций напряжением 3, 6, 10, 35, 110 кВ.
21.2. Трубчатые разрядники
Рис.21.2.1. Трубчатый разрядник
Трубчатый разрядник (рис.3) при нормальной работе установки отделен от линии воздушным промежутком . При появлении перенапряжения пробиваются промежутки
и
и импульсный ток отводится в землю. После прохождения импульсного тока по разряднику течет сопровождающий ток промышленной частоты. В узком канале обоймы (трубки) 1 из газогенерирующего материала (винипласта или фибры) в промежутке
между электродами 2 и 3 загорается дуга. Внутри обоймы поднимается давление. Образующиеся газы могут выходить через отверстие в кольцевом электроде 3.При прохождении тока через нуль происходит гашение дуги под действием охлаждения промежутка
газами, выходящими из разрядника. В заземленном электроде 4 имеется буферный объем 5, где накапливается потенциальная энергия сжатого газа. При проходе тока через нуль создается газовое дутье из буферного объема, что способствует эффективному гашению дуги.
Предельный отключаемый ток промышленной частоты определяется механической прочностью обоймы и составляет 10 кА для фибробакелитовой обоймы и 20 кА для винипластовой, упрочненной стеклотканью на эпоксидной смоле. Сопровождающий ток частотой 50 Гц определяется местом расположения разрядника и меняется в довольно широком диапазоне в зависимости от режима работы энергосистемы. Поэтому должны быть известны минимальные и максимальные значения тока КЗ в месте установки разрядника.
Минимальный ток разрядника определяется гасящей способностью трубки. Чем меньше диаметр выхлопного канала, чем больше его длина, тем меньше нижний предел отключаемого тока. Однако при больших токах в трубке возникает высокое давление. При недостаточной механической прочности трубки может произойти разрушение разрядника. В настоящее время выпускаются винипластовые разрядники высокой прочности с наибольшим отключаемым током до 20 кА.
Работа трубчатого разрядника сопровождается сильным звуковым эффектом и выбросом газов. Так, зона выброса газов разрядника PTB-I10 имеет вид конуса с диаметром 3,5 и высотой 2,2 м. При размещении разрядников необходимо, чтобы в эту зону не попадали элементы, находящиеся под высоким потенциалом.
Защитная характеристика разрядника в значительной степени зависит от вольт-секундной характеристики искрового промежутка. В трубчатом разряднике промежуток образован стержневыми электродами, имеющими крутую вольт-секундную характеристику из-за большой неоднородности электрического поля. В то же время электрическое поле в защищаемых аппаратах и оборудовании стремятся сделать равномерным с целью более полного использования изоляционных материалов и уменьшения габаритов и массы. При равномерном поле вольт-секундная характеристика получается пологой, практически мало зависящей от времени. В связи с этим трубчатые разрядники, имеющие крутую вольт-секундную характеристику, непригодны для защиты подстанционного оборудования. Обычно с их помощью защищается только линейная изоляция (изоляция, создаваемая подвесными изоляторами). При выборе трубчатого разрядника необходимо рассчитать возможный минимальный и максимальный ток КЗ в месте установки и по этим токам выбрать соответствующий разрядник. Номинальное напряжение разрядника должно соответствовать номинальному напряжению сети. Размеры внутреннего и внешнего
промежутков выбираются по специальным таблицам.
21.3.Вентильные разрядники
Рис. 21.3.1 Вентильный разрядник (а) и его искровые промежутки в увеличенном масштабе (б)
Разрядник типа PBC-1O (разрядник вилитовый станционный на 10 кВ) показан на рис.4,а. Основными элементами являются вилитовые кольца 1, искровые промежутки 2 и рабочие резисторы 3. Эти элементы расположены внутри фарфорового кожуха 4, который с торцов имеет специальные фланцы 5 для крепления и присоединения разрядника. Рабочие резисторы 3 изменяют свои характеристики при наличии влаги. Кроме того, влага, оседая на стенках и деталях внутри разрядника, ухудшает его изоляцию и создает возможность перекрытия. Для исключения проникновения влаги кожух разрядника герметизируется по торцам с помощью пластин 6 и уплотнительных резиновых прокладок 7.
Работа разрядника происходит в следующем порядке. При появлении перенапряжения пробиваются три последовательно включенных блока искровых промежутков 2 (рис.4,б). Импульс тока при этом через рабочие резисторы замыкается на землю. Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока.
После пробоя искровых промежутков напряжение на разряднике
Если сопротивление разрядника определяемое рабочими резисторами, линейное, то напряжение на разряднике растет пропорционально току и может стать выше допустимого для защищаемого оборудования. Для ограничения напряжения
сопротивление
выполняется нелинейным и с ростом тока уменьшается. Зависимость между напряжением и током в этом случае выражается как
где А -постоянная, характеризующая напряжение на сопротивлении при токе 1 А; б -показатель нелинейности. Случай, когда б=0, является идеальным, так как напряжение
не зависит от тока.
Описанные разрядники получили название вентильных, потому что при импульсных токах их сопротивление резко падает, что дает возможность пропустить большой ток при относительно небольшом падении напряжения.
В качестве материала нелинейных резисторов широко применяется вилит. В области больших токов его показатель нелинейности б=0,13-0,2. Типичная вольт-амперная характеристика вилитового резистора приведена на рис.5,а. При небольших токах сопротивление велико и напряжение линейно растет с ростом тока (область А). При больших токах сопротивление резко уменьшается и напряжение
почти не растет (область В).
Основу вилита составляют зерна карборунда с удельным сопротивлением около 10-2 Ом·м. На поверхности карборундовых зерен создается пленка оксида кремния
толщиной 10-7 м, сопротивление которой зависит от приложенного к ней напряжения. При небольших напряжениях удельное сопротивление пленки составляет 104-106 Ом·м. При увеличении приложенного напряжения сопротивление пленки резко уменьшается, сопротивление определяется в основном зернами карборунда и падение напряжения ограничивается..
Рабочие резисторы изготавливаются в виде дисков диаметром 0,1-0,15 м и высотой (20-60)·10-3 м. С помощью жидкого стекла зерна карборунда прочно связываются между собой.
Вилит очень гигроскопичен. Для защиты от влаги цилиндрическая поверхность дисков покрывается изолирующей обмазкой. Торцевые поверхности являются контактными и металлизируются.
Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис.3,а изображено 10 дисков). При наличии n дисков остающееся напряжение
Для уменьшения остающегося напряжения число дисков n должно быть как можно меньше.
При прохождении тока температура дисков повышается. При протекании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов промышленной частоты (один полупериод равен 10 мс) температура может превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя.
Предельно допустимая амплитуда импульса тока для диска диаметром 100 мм равна 10 кА при длительности импульса 40 мкс. Допустимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20-30 раз.
После прохождения импульсного тока через разрядник начинает протекать сопровождающий ток, представляющий собой ток промышленной частоты. По мере приближения тока к нулевому значению сопротивление вилита резко увеличивается, что ведет к искажению синусоидальной формы тока. Увеличение сопротивления цепи ведет к уменьшению тока и угла сдвига фаз ц между током и напряжением (). На рис.5,б показаны кривые токов в рабочем резисторе. Здесь 1 -напряжение источника 50 Гц; 2 -кривая тока цепи, определяемого индуктивным сопротивлением Х; 3 -кривая тока, определяемого рабочим резистором (
). Из-за нелинейности резистора
уменьшается возвращающееся напряжение (напряжение промышленной частоты). Уменьшение скорости подхода тока к нулю уменьшает мощность дуги в области нулевого значения тока. Все это облегчает процесс гашения дуги, горящей между электродами разрядного промежутка. Благодаря применению латунных электродов в искровых промежутках после прохода тока через нуль около каждого катода образуется промежуток, электрическая прочность которого 1,5 кВ. Это обеспечивает гашение сопровождающего тока при первом прохождении тока через нуль и позволяет погасить дугу в искровых промежутках без применения специальных дугогасительных устройств.
Устройство искрового промежутка вентильного разрядника ясно из рис.4,б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Расстояние между электродами принимается (0,5-1)·10-3 м.
Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электроны приводят к быстрому формированию разряда в центре искрового промежутка.
Искровые промежутки последовательно соединяются, образуя блок (см. рис.4,б). Обычно разрядник имеет несколько таких блоков. Результирующая вольт-секундная характеристика последовательно соединенных промежутков достаточно пологая.
Экспериментально установлено, что одиночный искровой промежуток способен отключить сопровождающий ток с амплитудой 80--100 А при действующем значении напряжения 1--1,5 кВ. Число единичных промежутков выбирается исходя из этого напряжения. Количество дисков рабочего резистора должно быть таким, чтобы максимальное значение тока не превысило 80--100 А. При этом гашение дуги обеспечивается за один по л у пери од.
Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис.4). Термическая стойкость дисков рассчитана на пропускание сопровождающего тока в течение одного-двух полупериодов.
Внутренние перенапряжения имеют низкочастотный характер и могут длиться до 1 с. Вследствие малой термической стойкости вилит не может быть использован для ограничения внутренних перенапряжений. Для ограничения внутренних перенапряжений используется аналогичный вилиту материал тервит, обладающий большой термической стойкостью и повышенным показателем нелинейности .
Рис.21.3.1 Комбинированный разрядник с тервитовыми резисторами
Тервитовые диски используются в комбинированных разрядниках (рис.6,а), предназначенных для защиты как от внутренних (коммутационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 иа рис.6,б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2).
Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны электромагнитные регистраторы, якорь которых при прохождении импульсного тока воздействует на храповой механизм счетного устройства.
С помощью искровых промежутков, показанных на рис. 4,б невозможно отключение токов 200--250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнитного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стойкость. В результате комбинированные магнитно-вентильные разрядники позволяют ограничивать как внутренние, так и атмосферные перенапряжения.
Основные характеристики вентильного разрядника:
1.Напряжение гашения - наибольшее приложенное к разряднику напряжение промышленной частоты, при котором надежно обрывается сопровождающий ток. Это напряжение определяется свойствами разрядника. Напряжение промышленной частоты, прикладываемое к разряднику, зависит от параметров схемы. Если при КЗ на землю одной фазы на свободных фазах появляется перенапряжение, то напряжение гашения, прикладываемое к разряднику, определяется уравнением
где - коэффициент, зависящий от способа заземления нейтрали;
- номинальное линейное напряжение сети. Для установок с заземленной нейтралью
, для изолированной нейтрали
.
2.Ток гашения , под которым понимается сопровождающий ток, соответствующий напряжению гашения
.
3.Дугогасящее действие искрового промежутка характеризуется коэффициентом
где - напряжение пробоя частотой 50 Гц искрового промежутка.
4. Защитное действие нелинейного резистора характеризуется коэффициентом защиты
где - напряжение на разряднике при импульсном токе 5--14 кА. Это напряжение должно быть на 20--25 % ниже разрядного напряжения защищаемой изоляции.
21.4.Разрядники постоянного тока
Рис.21.4.1 Разрядник постоянного тока
Для защиты установок от перенапряжений постоянного тока могут быть применены вентильные разрядники. Однако гашение дуги постоянного тока значительно сложнее, чем переменного. Для использования околоэлектродного падения напряжения требуется очень большое число искровых промежутков, так как на каждой паре электродов напряжение не должно превышать 20--30 В.
Для гашения дуги целесообразно использовать магнитное дутье с помощью постоянных магнитов. Возникающая при этом электродинамическая сила с большой скоростью перемещает дугу в узкой щели из дугостойкого изоляционного материала. В результате интенсивного охлаждения дуги ее сопротивление увеличивается и ток прекращается.
Вентильный разрядник для сети с напряжением 3 кВ постоянного тока показан на рис.7. Рабочий резистор 1 состоит из двух вилитовых дисков, соединенных с двумя искровыми промежутками 2 с магнитным гашением дуги. Надежное контактирование промежутков и дисков достигается с помощью пружины 3, одновременно являющейся токоподводящим элементом. Основные элементы разрядника располагаются в фарфоровом кожухе 6, который закрыт снизу крышкой 7. Герметизация разрядника осуществляется крышкой 4 с резиновым уплотнением 5.
21.5.Ограничители перенапряжений
На основе оксида цинка, имеющего резко выраженную нелинейность вольт-амперной характеристики, разработана серия нелинейных ограничителей перенапряжений (ОПН) на номинальное напряжение 110--500 кВ.
Рис.21.5.1 Устройство ОПН 27-220кВ
ОПН представляет собой нелинейный резистор с высоким коэффициентом нелинейности (против 0,1 --0,2 для вилита). Он включается параллельно защищаемому объекту (между потенциальным выводом и землей) без разрядных промежутков. Благодаря высокой нелинейности при номинальном фазном напряжении через ОПН протекает ничтожный ток 1 мА. При увеличении напряжения сопротивление ОПН резко уменьшается, ток, протекающий через него, растет. При напряжении
через ОПН протекает ток 104 А. После прохождения импульса напряжения ток в цепи ОПН определяется фазным напряжением сети.
ОПН ограничивают коммутационные перенапряжения до уровня и атмосферные перенапряжения до
. Из вольт-амперной характеристики ОПН-500 (рис.8) видно, что при снижении перенапряжений с
до
ток, протекающий через резисторы, уменьшается в 106 раз. Сопровождающий ток, протекающий после срабатывания аппарата, невелик (миллиамперы), так же, как и невелика мощность, выделяемая в резисторах. Это позволяет отказаться от последовательного включения нескольких искровых промежутков и дает возможность присоединять ОПН непосредственно к защищаемому оборудованию, что значительно повышает надежность работы.
Высокая нелинейность резисторов ОПН позволяет значительно снизить перенапряжения и уменьшить габариты оборудования, особенно при напряжении 750 и 1150 кВ. Габаритные размеры и масса ОПН намного меньше, чем у обычных вентильных разрядников того же класса напряжения.
Глава двадцать вторая. Трансформаторы тока.
22.1. Общие сведения.
Трансформаторы тока (ТТ) — это трансформаторы малой мощности, с помощью которых осуществляется экономичное и безопасное измерение тока в электроустановках среднего и высокого напряжения.
Трансформаторы тока предназначены для уменьшения первичных токов и напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применяются трансформаторы тока для измерения величины тока на присоединениях, например в ячейках РУ-0,4 кВ трансформаторной подстанции. В этом случае к вторичной обмотке трансформатора тока подключается амперметр.
Также широко применяются трансформаторы тока в цепях релейной защиты, и для учета электрической энергии. Именно с использованием трансформаторов тока 0,4 кВ подключается счетчик электроэнергии.
Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Рис. 22.1. Принцип устройства трансформаторов тока
а – одновитковый трансформатор тока; б – многовитковый трансформатор тока;
в - многовитковый трансформатор тока с двумя сердечниками;
1 - первичная обмотка; 2 - вторичная обмотка; 3 - сердечник; 4 - изоляция; 5 - обмотка прибора.
В распространяющихся на трансформаторы тока стандартах нормируются погрешности коэффициента трансформации и сдвига фазы, прочность изоляции, нагрузочная способность вторичной цепи (полное сопротивление нагрузки) и обозначение клемм. [http://transformatory-toka.ru]
22.2. Зависимость погрешностей от различных факторов.
Дата публикования: 2015-11-01; Прочитано: 3154 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!