Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Выключатели нагрузки



Стоимость выключателей с приводами довольно велика. С учетом необходимых для управления выключателем трансформаторов тока и устройств релейной защиты стоимость современного распределительного устройства получается очень высокой.
Если длительный ток установки невелик (400—600 А при напряжении 10 кВ), вместо выключателя с релейной защитой целесообразно использовать выключатель нагрузки и предохранители.
Выключатель нагрузки имеет ДУ небольшой мощности для отключения номинальных токов. В случае КЗ используется высоковольтный предохранитель. В выключателях нагрузки для гашения дуги применяются камеры с автогазовым, электромагнитным, элегазовым дутьем и вакуумными элементами.
В камерах с автогазовым дутьем гашение дуги осуществляется газами, которые выделяются под действием высокой температуры дуги стенками из газогенерирующего материала (органического стекла, винипласта и др.). Общий вид автогазового выключателя нагрузки типа ВН-16 на номинальное напряжение 10 кВ и отключаемый ток 200 А показан на рис. 18.28. Все три полюса размещаются на сварной раме. На нижнем опорном изоляторе полюса расположены вывод полюса и шарнир подвижного контакта 1. На верхнем изоляторе укреплены неподвижный главный контакт 2, дугогасительная камера 5 и второй вывод полюса. Подвижный главный контакт 1 выполнен из двух стальных пластин. В середине укреплен дугогасительный контакт 4 в виде изогнутой тонкой медной шины. Подвижные контакты приводятся в движение валом выключателя 3, который соединен с контактами фарфоровой тягой. Отключение выключателя происходит под действием пружин 6, которые заводятся при включении. В дугогасительной камере (рис. 18.28,6) расположен неподвижный дугогасительный контакт точечного типа 7, соединенный с главным неподвижным контактом 2. Корпус камеры выполнен из пластмассы и состоит из двух половин, стянутых винтами. Внутри корпуса размещены два вкладыша 8 из газогенерирующего материала — органического стекла.
Управление выключателем осуществляется ручным рычажным приводом со встроенным электромагнитом для дистанционного отключения. Если необходимо дистанционное включение, то может быть использован дополнительный электромагнитный привод.
Во включенном положении выключателя ток проходит через контур главных и дугогасительных контактов. Во время отключения сначала размыкаются главные контакты и весь ток перебрасывается в цепь дугогасительных контактов. После расхождения дугогасительных контактов между вкладышами 8 загорается дуга. Малая толщина подвижного дугогасительного контакта 4 и узкая щель, в которой он перемещается, обеспечивают хороший контакт дуги со стенками вкладышей.

18.28 Выключатель нагрузки типа BH-16

Благодаря высокой температуре дуги вкладыши интенсивно выделяют газ, который стремится выйти из камеры через зазор между подвижным контактом и вкладышами. При этом возникает продольный обдув дуги, в результате чего она гаснет. Зона выброса газов из камеры 200—500 мм. Контакт 4 выходит из камеры тогда, когда дуга погаснет. В отключенном положении дугогасительный контакт отходит от камеры на расстояние, обеспечивающее достаточную электрическую прочность для данного класса напряжения Последовательно с выключателем нагрузки включаются мощные предохранители типа ПК, которые защищают установку от КЗ.
Выключатель может снабжаться дополнительным устройством, которое автоматически отключает его после срабатывания предохранителей. Это устройство приводится в действие указателем срабатывания предохранителя.

18.29 Вакуумный контактор

1— камера вакуумная дугогасительная; 2 — каркас; 3— основание; 4— резистор; 5 — разъемы штепсельные; 6 — диод; 7 — щека; 8 — панель; 9— счетчик числа циклов; 10 — привод электромагнитный; 11 — контакт вспомогательной цепи; 12 — пружины отключающие; 13 — траверса; 14 — пружина дополнительного поджатия; 15 — связь гибкая; 16 — выводы контактные

Без замены вкладышей выключатель нагрузки допускает 75 отключений тока 200 А при напряжении 10 кВ.
Перспективны вакуумные выключатели нагрузки и контакторы. На рис. 18.29 представлен вакуумный контактор К.ВТ-6/10-400-4-У2 на камерах КВД-10-400-4-У2. Вакуумный контактор в отличие от выключателя нагрузки имеет большое допустимое число коммутаций номинального тока (105 ВО) и отключает 50 раз небольшие токи КЗ (4 кА при напряжении 10 кВ). Вакуумная камера 1 укреплена в изоляционном корпусе 2. Дополнительное поджатие подвижного контакта создается пружиной 14. Отключение производится изоляционной траверсой 13, на которую действует электромагнит 10. Электромагнит может питаться постоянным или переменным током через выпрямительный мост. Контактор КВТ-6/10-400-4-У2 имеет следующие данные номинальное напряжение 6 и 10 кВ, номинальный ток 400 А, число допустимых коммутаций (ВО) при номинальном токе 10% число включений и отключений в час 300 при токе 400 А, поминальный ток отключения 4 кА, число допустимых коммутаций при этом токе 50.
На базе вакуумных ДУ могут быть созданы выключатели нагрузки на номинальный ток до 2 кА, номинальный ток отключения 6 кА и номинальное напряжение до 36 кВ.

18.11. Выбор выключателей

При выборе выключателя его номинальные параметры сравниваются с параметрами сети в месте его установки. Выключатель выбирается по наиболее тяжелому режиму работы, который возможен в эксплуатации.
Номинальное напряжение выключателя должно быть равно или больше номинального напряжения защищаемой сети.
Номинальный длительный ток выключателя должен быть больше номинального тока установки.
Номинальный ток отключения выключателя должен быть больше максимального расчетного тока короткого замыкания к моменту расхождения контактов.
При определении необходимо рассмотреть все возможные варианты КЗ и выбрать наиболее тяжелый вероятный режим. Как правило, наиболее тяжелые режимы создаются при отключении трех- и однофазного КЗ на землю. Расчет апериодической слагающей ведется из условия, что КЗ произошло в момент, когда напряжение в одной из фаз равно нулю. Ток /вкл.ном должен быть не менее ударного тока КЗ, протекающего через выключатель.
При выборе выключателя следует иметь в виду, что в момент размыкания контактов выключателя апериодическая составляющая тока КЗ не должна превышать апериодический ток, гарантированный заводом-изготовителем. Обычно этот ток выражается в процентах номинального тока отключения.
Расчетное время размыкания берется равным минимально возможному.
Наряду с номинальным током отключения необходимо учитывать циклы (последовательность включений и отключений— ВО), при которых выключатель работает. Номинальный ток отключения выключателей без АПВ гарантируется при цикле О—180—ВО—380—ВО. Для выключателей, работающих в циклах многократного быстродействующего АПВ, возможно уменьшение номинального тока отключения, особенно при втором или третьем АПВ.
Термическая стойкость проверяется из условия протекания через выключатель тока КЗ в течение максимального времени, обусловленного срабатыванием защиты.
Номинальный ток электродинамической стойкости выключателя должен превышать максимально возможное значение ударного тока КЗ, которое может быть в установке. Обычно сравнивают мгновенные значения пика тока.
Выпускаемые промышленностью выключатели испытываются при скоростях восстановления напряжения, которые являются типовыми. Однако в некоторых случаях необходимо проводить расчет скорости восстановления напряжения в проектируемых сетях и сравнивать с условиями, которые имели место при испытаниях аппарата. Особенно тяжелые условия с этой точки зрения имеют место при КЗ на зажимах мощных генераторов, трансформаторов и неудаленных КЗ. Иногда требуется установка специальных шунтирующих резисторов для снижения скорости восстановления напряжения. Для мощных системных выключателей, от работы которых зависит устойчивость параллельно работающих сетей, важным параметром является время отключения и время повторного включения. Иногда эти параметры диктуют выбор типа выключателя и его привода.
При выборе типа выключателя следует учитывать следующие обстоятельства:
1. При номинальном напряжении 6—10 кВ и редких коммутациях целесообразно применение маломасляных выключателей. При частых коммутациях рекомендуется применять вакуумные и элегазовые, обладающие большим сроком службы.
2. При номинальном напряжении 35—110 кВ и номинальных токах отключения до 20 кА целесообразно применять маломасляные выключатели. При больших номинальных напряжениях и больших номинальных токах отключения применяются воздушные и элегазовые выключатели.
При экономической оценке выбираемого типа выключателей следует учесть, что, несмотря на то, что вакуумные выключатели имеют большую стоимость, применение их более оправдано ввиду малых расходов на техническое обслуживание и большого срока службы ДУ (до 25 лет).

Разъединители, отделители, короткозамыкатели

Общие сведения

Разъединители служат для включения и отключения цепи высокого напряжения либо при токах, значительно меньших номинальных, либо в случаях, когда отключается номинальный ток, но напряжение на контактах аппарата недостаточно для образования дуги.

В первом случае разъединители применяются, как пра­вило, для отсоединения от

Рис. 19.1. Схемы включения разъединителей

напряжения высоковольтного оборудования перед ревизией или ремонтом (рис. 19.1,а).

Согласно правилам техники безопасности оборудование, выводимое в ремонт, должно быть отключено. Между вы­водами отключенного аппарата и цепью, оставшейся под напряжением, должен быть создан видимый воздушный промежуток, гарантирующий безопасные условия работы обслуживающего персонала.

Для безаварийной работы ток в цепи сначала отклю­чается выключателем QF, и только потом размыкаются контакты разъединителей QS1kQS2. В этом случае разъединителями отключаются небольшие емкостные токи, соз­даваемые опорной изоляцией отключаемого аппарата и присоединенными к нему проводниками.

После размыкания QS1 и QS2 выключатель QF, подле­жащий ремонту, должен быть заземлен с обеих сторон с по­мощью дополнительных разъединителей QS3 и QS4. Если ножи QS3 и QS4 не заземлены, то на выводах выключате­ля QF может возникать высокий потенциал за счет емкост­ной связи с линиями высокого напряжения. Для удешевле­ния и упрощения схем коммутации разъединители исполь­зуются для отключения небольших токов (токов холостого хода трансформаторов, зарядных токов воздушных и ка­бельных линий). Допустимые нагрузки разъединителей приведены в [19.2].

В ряде случаев разъединителями можно пользоваться для перевода нагрузки с одной ветви А на другую Б (рис. 19.1,6). Для этого при замкнутом разъединителе QS2 включают разъединитель QS1. После этого разъединитель QS2 отключают. Дуга на его контактах не возникает, так как напряжение на них равно падению напряжения на вет­ви QS1, которое ничтожно мало.

К разъединителям предъявляются следующие требова­ния:

1. Контактная система должна надежно пропускать но­минальный ток сколь угодно длительное время. В особо тяжелых условиях работают разъединители

наружных ус­тановок, подвергающиеся воздействию воды, пыли, льда. Контактная система должна иметь необходимую динамиче­скую и термическую стойкость.

2. Разъединитель и механизм его привода должны на­дежно удерживаться во включенном положении при проте­кании тока КЗ. В отключенном положении подвижный кон­такт должен быть надежно фиксирован, так как самопро­извольное включение может привести к очень тяжелым ава­риям и человеческим жертвам.

3. В связи с особой ролью разъединителя как аппарата безопасности промежуток между разомкнутыми контакта­ми должен иметь повышенную электрическую прочность.

4. Привод разъединителя целесообразно блокировать с выключателем. Операции с разъединителем должны быть возможны, только когда выключатель отключен.

19.2. Конструкция разъединителей и их приводов
Для внутренних установок, не подверженных воздействию атмо­сферы и с напряжением, как правило, не выше 20 кВ, наиболее широко распространены рубящие разъединители с движением подвижного кон­такта (ножа) в вертикальной плоскости.

Для получения электродинамической стойкости контактов необхо­димо соответствующее контактное нажатие. С ростом тока контактное нажатие и усилие, необходимое для включения, возрастают. При ручных приводах контактные нажатия стремятся брать возможно ма­лыми. С этой целью применяют сдвоенные ножи и электромагнитные замки.

Для повышения электродинамической стойкости контактов разъ­единителей широко используются электродинамические силы, возника­ющие в токоведущих элементах.

На рис. 19.2 показан трехполюсный разъединитель типа РВ на напряжение 10 кВ и ток 400 А, а на рис. 19.3 — в увеличенном масшта­бе его контактная система.

Рис. 19.2. Разъединитель типа РВ

Рис. 19.3. Контактная система разъединителя типа РВ

Подвижный контакт 1 выполнен в виде двух параллельных шин. При КЗ электродинамическая сила прижимает шины 1 к стойкам не­подвижного контакта 2. При номинальном токе контактное нажатие создается пружинами 3, которые воздействуют на подвижный контакт через стальные пластины 4.

Магнитный поток, создаваемый проходящим по шинам током, за­мыкается вокруг них и через стальные пластины 4. В системе возника­ют электродинамические силы такого направления, чтобы возросла энергия магнитного поля. Пластины приближаются к шинам 1 и попада­ют в зону более сильного магнитного поля. Электромагнитная энергия при этом возрастает. Таким образом создается сила Р, притягивающая стальные пластины к шинам и увеличивающая контактное нажатие.

Для управления разъединителями типа РВ применяются рычаж­ные системы с ручным или моторным приводом. В схеме ручного ры­чажного привода (рис. 19.4) вал разъединителя имеет угол поворота 90°. Рычаг привода имеет угол поворота 150°. Чтобы избежать отклю­чения под действием электродинамических сил, во включенном положе­нии механизм находится в положении, близком к мертвому (шатун 1 и короткий рычаг 2 шарнира О располагаются почти на прямой). Кро-

Рис. 19.4. Рычажный привод разъ- Рис. 19.5. Пневматический привод разъединителя

единителя


ме того, включающий рычаг 3 фиксируется в отключенном и включен­ном положениях с помощью специальных стопоров. При токах более 3 кА рычаг 3 заменяется червячной передачей, что позволяет увеличить действующую на шины силу.

Для дистанционного управления применяются электрические и пнев­матические приводы. В электрических приводах ось двигателя связыва­ется с

выходным рычагом привода через систему червячной передачи.

В пневматическом приводе отсутствуют громоздкие рычажные пе­редачи и обеспечивается плавный ход контактов (рис. 19.5). Поршневой механизм (цилиндры, поршни) 1, блок пневматических клапанов управ­ления 2 и 3 и электромагниты управления 4 и 5 устанавливаются непосредственно на раме разъединителя. К разъединителю подводятся

Рис. 19.6. Разъединитель типа РНДЗ-1

трубопровод со сжатым воздухом 6 и цепи управления электромагни­тами.

Поршневой механизм проектируется так, что он находится в «мерт­вом» положении при включенном и отключенном разъединителе.

При подаче напряжения на обмотку электромагнита 4 срабатыва­ет клапан включения 2. Верхний цилиндр включения поршневого меха­низма 1 разобщается с атмосферой, и в него подается сжатый воздух под давлением 0,5—1 МПа. В это время нижний цилиндр 7 отключения через клапан отключения 3 связан с атмосферным воздухом и не пре­пятствует движению нижнего поршня вниз. Под действием сжатого воз­духа верхний поршень поворачивает рычаг и связанный с ним вал разъединителя 8, что приводит к замыканию контактов. Аналогично протекает процесс отключения.

Для наружной установки широко используются разъединители по­воротного типа РНД. На рис. 19.6 представлен разъединитель типа РНДЗ-1 на напряжение 220 кВ и номинальный ток 2 кА. На раме 1 смонтированы неподвижные изоляторы 2 и подвижные изоляторы 3, которые могут вращаться вокруг своей вертикальной оси. С подвиж­ным изолятором связаны контакты разъединителя в виде ножей 5, вращающихся в горизонтальной плоскости. Места сочленения подвижных деталей защищены кожухом 4. Для размыкания ножей 5 пово­рачивается правый изолятор 3, который с помощью тяги 8 повора­чивает левый изолятор 3. При необходимости правый нож в положе­нии «отключено» может быть заземлен с помощью дополнительного ножа 7, который вращается в вертикальной плоскости и замыкается с контактом 6. Благодаря механической блокировке заземление воз­можно только при отключенном положении ножей 5. Разъединители такого типа применяются при напряжении до 750 кВ.

Следует отметить, что площадь открытого распредустройства (ОРУ) в значительной степени определяется площадью, занимаемой разъединителями. При напряжении значительную эконо­мию площади дают подвесные разъединители (рис. 19.7). Неподвижный

Рис. 19.7. Подвесной разъединитель

контакт 1 в виде кольца укреплен на изоляторе 2. В качестве опоры контакта 1 могут использоваться трансформаторы тока или напряже­ния. Конический подвижный контакт 3 подвешен к гирлянде 4 подвес­ных изоляторов на стальных тросах 5. Тросы 5 пропущены через бло­ки 6 на портале 7 и связаны с барабаном электролебедки. Подвижный контакт 3 соединен с токоведушей трубой 9, неподвижный контакт соединен с гибкой шиной 8 либо с контактом аппарата. При включении контакт 3 опускается вниз под действием специального груза, который создает необходимое контактное нажатие. При отключении контакт 3 и связанный с ним груз поднимаются с помощью электролебедки. Та­кие разъединители разработаны в СССР на напряжение до 1150 кВ и длительные токи до 3,2 кА.





Дата публикования: 2015-11-01; Прочитано: 1444 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...