![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Функция f(x) называется функцией целочисленного аргумента, если множество значений x, для которых она определена, является множеством всех натуральных чисел1, 2, 3,… Примером функции целочисленного аргумента может служить сумма n первых чисел натурального ряда. В данном случае
Числовой последовательностью называется бесконечное множество чисел
(1)
следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция целочисленного аргумента,
т.е.
.
Число А называется пределом последовательности (1), если для любого существует число
, такое, что при
выполняется неравенство
. Если число А есть предел последовательности (1), то пишут
Числовая последовательность не может иметь более одного предела. Последовательность, имеющая предел, называется сходящейся.
Для сходящихся последовательностей имеют место теоремы:
если .
Предел числовой последовательности. Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу a при увеличении порядкового номера n. В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.
Это определение означает, что a есть предел числовой последовательности, если её общий член неограниченно приближается к a при возрастании n. Геометрически это значит, что для любого > 0 можно найти такое число N, что начиная с n > N все члены последовательности расположены внутри интервала (a -, a +). Последовательность, имеющая предел, называется сходящейся; в противном случае – расходящейся.
Последовательность называется ограниченной, если существует такое число M, что | un | M для всех n. Возрастающая или убывающая последовательность называется монотонной.
43.Предел функции. Предел функции в точке. Односторонние пределы. Предел функции при .
Дата публикования: 2015-10-09; Прочитано: 380 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!