![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Цель работы: изучение архитектуры рекуррентных нейронных сетей Элмана и специальных функций для их создания, инициализации, настройки весов и смещений, обучения; ознакомление с демонстрационным примером и его скриптом, а также приобретение навыков построения сетей управления движущимися объектами, построения систем технического зрения и решения других динамических задача.
Теоретические сведения
Сети Элмана относятся к классу рекуррентных нейронных сетей. Характерной особенностью архитектуры рекуррентных сетей является наличие блоков динамической задержки и обратных связей. Это позволяет таким сетям обрабатывать динамические модели.
Сети Элмана состоят их двух слоёв – выходного и входного, при этом входной слой охвачен динамической обратной связью с использованием линии задержки. Динамическая обратная связь позволяет учесть предысторию наблюдаемых процессов и накопить информацию для выработки правильной стратегии управления. В ряде применений используется несколько слоёв нейронов.
Во входном слое двухслойной сети Элмана используется передаточная функция гиперболического тангенса transig, в выходном
слое – линейная функция purelin. Такое сочетание передаточных функций позволяет максимально точно аппроксимировать функции с конечным числом точек разрыва. Для этих целей необходимо также, чтобы выходной слой имел достаточно большое число нейронов.
Все эти слои Элмана имеют смещения. Функциями взвешивания и накопления являются функции dotprod и ntesum соответственно. Выход последнего слоя является выходом сети. Веса и смещения инициализируются с помощью функции initnw, реализующей алгоритм Нгуена–Видроу. Aдаптация реализуется с помощью функции adaptwb, которая устанавливает режим, при котором веса и смещения каждого слоя могут быть настроены с использованием собственных функций настройки. Для сетей Элмана такими функциями могут быть либо функция настройки методом градиентного спуска с возмущением leargdm. Критерием качества обучения может быть одна из двух функций: mse или msereg.
Сети Элмана создаются функцией
net = newelm(PR, [S1, S2, …, SN],
{TF1, TF2, …, TFN},
Дата публикования: 2015-10-09; Прочитано: 671 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!