Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Раскос Р 3



N= 62.98 т (сжат)

Атр=62.98·1000/(0.768·3200·0.95)=26.98см2

Принимаем L125x12 по ГОСТ 8509-86;;

Геометрические размеры элемента:

- Расчетная длина элемента lefx= 435см;

- Расчетная длина элемента lefy= 435 см;

Ix у0 A
422.32 3.53 28.89

Ix=422.32·2=844.64см4

Iy=2·(422.32+((3.53+1/2)^2)·28.89)=1783.04см4

ix = (844.64/57.78)^0.5=3.82см

iy = (1783.039202/57.78)^0.5=5.56см

Результаты расчета:

1) Расчет на прочность элемента, подверженного центральному растяжению или сжатию

Учет ослаблений сечения

Ослабления рассматриваемого сечения - отсутствуют.

Площадь нетто:

An= A =46,48 см2.

Элемент - сжатый.

N/An= 62.98·1000/57.78=1090кг/см2<3040кг/см2 условие выполнено (формула (5); п. 5.1).

2) Расчет на устойчивость элемента, подверженного центральному сжатию

Гибкость стержня относительно оси x:

lx= lefx/ix= 435/3.823=113.78

Гибкость стержня относительно оси y:

ly= lefy/iy= 435/5.555=78.31

Гибкость:

l = max(lx; ly)= 113.8

Коэффициент продольного изгиба принимается по табл. 72 в зависимости от l и Ry

f = 0.364

3) Проверка устойчивости:

N/(f A)= 62.98·1000/(0.364·57.78)=2994.5кг/см2<3040кг/см2 - условие выполнено (формула (7); п. 5.3).

Коэффициент:

a = N/(f A Rygc)= 62.98·1000/(0.364·57.78·3200·0.95)=0.99

4) Проверка по условию предельной гибкости сжатых элементов

По таблице 19 СНиП II-23-81:

Тип элемента - 2. а) Элементы, кроме указанных в поз. 1 и 7 плоских ферм, сварных пространственных и структурных конструкций из одиночных уголков, пространственных и структурных конструкций из труб и парных уголков.

l= 113.78 <210–60·0.985=150.9 - условие выполнено.

Стойки

Стойка С2

N= 17.63 т (сжат)

Атр=17.63·1000/(0.768·3200·0.95)=7.55см2

Принимаем L80x7 по ГОСТ 8509-86;;

Ix у0 A
65.31 2.23 10.85

Геометрические размеры элемента:

- Расчетная длина элемента lefx= 315см;

- Расчетная длина элемента lefy= 315 см;

1) Расчет на прочность элемента, подверженного центральному растяжению или сжатию

Учет ослаблений сечения

Ослабления рассматриваемого сечения - отсутствуют.

Площадь нетто:

An= A = 21.7 см2.

Элемент - сжатый.

N/An= 17.63·1000/21.7=812.44кг/см2<3040кг/см2 - условие выполнено (формула (5); п. 5.1).

2) Расчет на устойчивость элемента, подверженного центральному сжатию

Ix=65.31·2=130.62см4

Iy=2·(65.31+((2.23+1/2)^2)·10.85)=292.35см4

ix = (130.62/21.7)^0.5=2.45см

iy = (292.34793/21.7)^0.5=3.67см

Гибкость стержня относительно оси x:

lx= lefx/ix= 315/2.453=128.41

Гибкость стержня относительно оси y:

ly= lefy/iy= 315/3.67=85.83

Гибкость:

l = max(lx; ly)=128.4

Коэффициент продольного изгиба принимается по табл. 72 в зависимости от l и Ry

f = 0.288

3) Проверка устойчивости:

N/(f A)= 17.63·1000/(0.288·21.7)=2820.98кг/см2<3040кг/см2 - условие выполнено (формула (7); п. 5.3).

Коэффициент:

a = N/(f A Rygc)= 17.63·1000/(0.288·21.7·3200·0.95)=0.93

4) Проверка по условию предельной гибкости сжатых элементов

По таблице 19 СНиП II-23-81:

Тип элемента - 2. а) Элементы, кроме указанных в поз. 1 и 7 плоских ферм, сварных пространственных и структурных конструкций из одиночных уголков, пространственных и структурных конструкций из труб и парных уголков.

l= 128.41 <210–60·0.928=154.32 - условие выполнено.





Дата публикования: 2015-10-09; Прочитано: 277 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...