Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Месторождения свинца



Ключевые слова: уникальные, крупные, средние, богатые, бедные, медные концентраты, рафинирование, ликвационные, кристаллизационные, магматические, карбонатные, скарновые, плутоногенные, вулканогенные, гидротермальные, стратиформные, изоморфные.

По запасам полезных ископаемых (п/и) месторождения подразделяются: уникальные, крупные, средние и мелкие (табл. 1)

Уникальные месторождения (многих п/и) легирующих и цветных металлов по составу полезных компонентов относятся к комплексным. Они часто представлены штокверковыми или пластовыми рудными залежами. Вместе с крупными месторождениями они формируют сырьевую базу цветной металлургии, химической отрасли.

По содержанию полезных основных компонентов месторождения подразделяют на богатые, средние и бедные (табл.2)

Группировка месторождений по запасам (табл. 1)

Полезные ископаемые   Группы месторождений
Уникальные Крупные Средние Мелкие
Никель >5*105 (2.5-5)* 105 (1-2.5)* 105 -105
Оксид вольфрама >2.5*105 (1-2.5)* 105 (1.5-10)*104 <1.5*104
Молибден >3*105 5*104-5*105 (2.5-5)* 104 <2.5*104
Олово >105 (2.5-10)* 104 5*103-2.5*104 <5*103
Медь >5*106 7*105-5*106 (2-7)* 105 <2*105
Ртуть >106 104-105 (3-10)* 103 <3*103

Богатые месторождения характеризуются высокими содержаниями полезных компонентов. К ним относятся большая часть уникальных и мелких месторождений. Мелкие месторождения с богатыми рудами отличаются высокой дисперсией содержаний полезных компонентов. Рядовые и бедные руды типичны для крупных и средних месторождений. Тенденция к снижению концентрации полезного компонента в рудах, главным образом, свойственна крупным месторождениям. Для них значения минимального промышленного и бортового содержаний полезных компонентов сближаются. Они характеризуются низкими значениями дисперсий содержаний полезных компонентов (п/к).

Группировка месторождений по содержанию полезных компонентов (табл.2)

Полезные ископаемые Содержание полезных компонентов, %
Высокое (богатые руды) Средние (рядовые руды) Низкое (бедные руды)
Никель: в сульфидных рудах >1 0,5-1 0,1-0,5
В силикатных рудах >2 1,3-2 1-1,3
Оксид вольфрама >1 0,3-1 0,1-0,3
Олово >1 0,4-1 0,1-0,4
Молибден >0,5 0,2-0,5 0,08-0,2
Медь >2,5 1-2,5 0,3-1,0
Свинец >5 2-5 <2
Ртуть >1 0,1-1 <0,1

Экономическая ценность месторождения зависит от вида минерального сырья, её запасов, качественной характеристики, технологии добычи и переработки. При этом учитываются необходимые затраты на добычу и переработку при нормативном уровне рентабельности. Для каждого вида продукции, получаемой за счёт эксплуатации месторождений на определённом временном интервале, действуют рыночные цены, представляющие собой сумму полной себестоимости и нормативной прибыли (НВП). Прибыль определяется в размере 10-15% от среднегодовой величины производственных фондов.

По запасам добычи, производству и использованию в различных отраслях народного хозяйства в группе цветных металлов медь (Cu) одно из ведущих мест месторождения меди при своём генетическом разнообразий широко распространены и характеризуются комплексным составом руд. Это объясняется тем, что он, как типичный халькофил, обладает большим родством с серой, образуя сульфидные и сульфатные соединения, и может выходить в состав карбонатных, силикатных и оксидных образований или находится в самородном состоянии.

Наибольшую промышленную значимость имеют сульфидные минералы: халькопирит, борнит, халькозин и кубанит. Общая доля этих минералов в запасах меди составляет около 90%.

В медных рудах часто присутствуют минералы железа, молибдена, вольфрама, свинца, цинка, кобальта и мышьяка. В значительных количествах содержится золото и серебро, иногда ванадий и апатит.

В виде изоморфных примесей в рудных минералах в промышленных концентрациях могут присутствовать различные халькофильные редкие металлы. Медь часто является сопутствующим полезным компонентом в комплексных рудах никеля, кобальта, свинца, цинка, олова, вольфрама, висмута и золота.

По содержанию оксидов меди, руды подразделяют на сульфидные, оксидные и смешанные.

В сульфидных рудах концентрации меди в оксидной форме не превышает 10%, реже – 30%; в оксидных рудах – 50-70%.

На технологию переработки руд важное влияние оказывает их фазовый состав. Сульфидные руды обогащают флотационными способами, оксидные и смешанные перерабатывают путём сульфидизации оксидов меди с последующей их флотацией, а также гидрометаллическим способом.

Медные концентраты и богатые руды содержанием меди более 3-5 % подвергают пирометаллургической переработки, в результате которой получается черновая медь. Электролитическим рафинированием её доводят до высокой чистоты. Отходящие газы металлургического процесса целесообразно использовать для производства серной кислоты или элементной серы. Из пыли извлекают висмут, кадмий, германий, и другие металлы, из электролитных шламов – редкие и благородные металлы. Более 80% мировых запасов и производства приходится на Чили, США, Канада, Перу, Замбию, Заир и Филлипины. Содержание меди в руде изменяется от 0,3 до 12%.

Потребление меди распределяется следующим образом (%):

1) электротехническая промышленность более 50%,

2) машиностроение – 28%;

3) строительство – 15%;

4) потребительские товары – 7%.

Промышленные месторождения меди относятся к следующим генетическом типам: ликвационному и кристаллизационному, магматическим, карбанатитному, скарновому, плутоногенному и вулканогенному гидротермальным и стратиформному.

За рубежом запасы медно-порфировых руд оцениваются в 62,6%, медистых песчаников и сланцев – в 21,5%. К медно-порфировому типу относятся как самые крупные, так и самые бедные месторождения.

Медно-порфировые месторождения связаны с порфировыми разностями магматических пород, слагающими разновозрастные вулканно-плутонические сооружения.

В рудных эндогенных и стратиформных месторождений минералы свинца и цинка - галенит и сфалерит являются главнейшими источниками добычи свинцово-цинковых руд, иногда традиционно называемых полиметаллическими. В экзогенных условиях эти минералы окисляются. При этом образуются церуссит, англезит, смитсонит, каламин и другие минералы с различной миграционной способностью.

В сфалерите из сульфидных руд в виде изоморфной примеси присутствуют кадмий, серебро и золото. В оксидных рудах кадмий встречается в гриноксиде, а серебро – в самородном виде.

Свинцово-цинковые руды обогащаются преимущественно флотационным, реже гравитационным способом в тяжёлых суспензиях. Флотация может быть прямой селективной и коллективной с последующим разделением концентратов. При флотации оксидных полиметаллических руд производят предварительную сульфидизацию оксидных минералов.

Свинцовых и часть цинковых концентратов перерабатывают пирометаллургическим, а большую часть цинковых гидрометаллургическими способами. Кадмий получают из медно-цинковых кеков, а последние – при выщелачивании обожженных цинковых концентратов. Серебро и золото извлекают при металлургической переработке свинцовых концентратов.

В свинцовых концентратах различных марок свинца должно быть не менее 30-70%, цинка не более 2,5-12% и меди 1,5-4%; в цинковых концентратах – цинка не менее 40-53%, железа не более 7-16%.

Основной сферой потребления свинца и цинка служит автомобильная промышленность. В США 55% общего использования свинца приходится на аккумуляторные батареи и 18% - на добавки к бензину, 37% цинка используется для изготовления цинковых отливок под давлением и 36% - для оцинковывания стальных изделий.

Минимальное промышленное содержание в рудах суммы обоих металлов для месторождений, отрабатываемых карьерами, снижается до 0,5-0,18%, а для месторождений с подземной добычей составляет 1,-2%.

Промышленные типы месторождений свинца и цинка относятся в основном к постмагматическим, стратиформным и метаморфизованным образованиям.

Стратиформные месторождения свинца и цинка имеют важное значение в балансе запасов и добыче свинца. Первоначально они формировались как сингенетические.

Контрольные вопросы:

1. Для чего производится группировка месторождений?

2. Качественная характеристика месторождения полезного ископаемого?

3. Какие минералы содержатся в рудах месторождения Акжал?

4.Месторождения Акжал какому генетическому типу относится?

5. По генезису как подразделяются магматические породы?

Литературы:

1. Якушева А. Ф. «Общая геология». М. Недра 1988.

2. Мельничук В. И. «Общая геология». М. Недра 1989.

3. Ершов В. В. «Основы геологии». М. Недра 1986.

4. Иванова М. Ф. «Общая геология». М. Недра 1974.

5. Панюков П. Н. «Основы геологии». М. М. Недра 1978.

Лекция № 14

Гидрогеологические условия месторождения полезных ископаемых (Пайдалы казбалар кен орындарының жағлайлары).

План:

1. Естественные факторы обводнения месторождения (Кен орныныңсулануының табиғи факторлары)

а) атмосферные осадки (атмосфералық жауын-шашындар)

б) рельеф местности (макет рельефа) (ауданның(бедердің макеті) бедері)

в) фильтрация воды из поверхностных водотоков и водоёмов (ағын судан және суайдындардан судың фильтрленуі)

г) Состав покровных пород, степень обнажённости коренных пород и тектоника (Жабынды таужынысның құрамы, тұрғылықты таужынысның және тектоника жалаңаштық дәрежесі)

д) литологический состав пород, вскрываемых горными выработками и тектоника района (тұқымның литологиялық құрамы таудың өндірімдерінің және ауданның тектоникасының вскрываемых).

2. Особенности техногенного режима подземных вод на шахтных и карьерных полях (Шахталық және карьер егістігіндегі жерасты судының техногенді режимінің өзгешеліктері).

Ключевые слова: Естественные факторы, рельеф, степень обнаженность горных пород, обводнения, техногенный режим, горная выработка, избыточное увлажнение, гипсометрическое положение, водоотводящий канал, туннель, поглашение, шахта, карьер.

Обычно условия обводнения месторождений полезных ископаемых зависит от общих естественноисторических факторов, а также от искусственных мероприятий (рис.1). В процессе эксплуатации месторождения вода поступает в горные выработки из водонасыщенных пластов или трещин и более крупных пустот, вскрываемых подземными или открытыми выработками. Количество воды, поступающеё в горные выработки, обуславливается рядом естественных и искусственных факторов, влияющих на обводнение неодинаково.

Конкретные данные о характере и степени обводнённости месторождений получают в результате наблюдений над притоками воды в горные выработки и над различными проявлениями водоносности при разработке месторождений. Очень важное значение имеют физико-геологические явления, возникающие в процессе притока воды в горные выработки и осложняющие прорывы плывунов, оползание откосов карьеров, пучение почвы или кровли выработок и т.д.

Естественные основные факторы, которые должны изучаться в процессе разведки месторождения следующие:

1.Одной из основных, а иногда и единственной причиной обводнения горных выработок является инфильтрация атмосферных осадков и меньше в районах засушливых, с недостаточным увлажнением. Это обстоятельство особенно резко появляется в неглубоких горных выработках, расположенных на пониженных участках местности (котловане, речных долин, балок и т.д.), где в дождевые периоды и во время весеннего снеготаяния (паводков) приток воды в горны выработки увеличивается на 40-50, а иногда и на 200-300% по сравнению со средневековьем. В тоже время при наличии в кровле выдержанных водоупорных слоёв водопроток в горные выработки в весенние время увеличивается только на 10-15% по сравнению со снеговым.

В выработках глубиной 100-200 м увеличение поступления воды отмечается через несколько дней после начала интенсивных дождей или снеготаяния. На некоторых месторождениях обильные дожди вызывают усиление обводнённости выработок даже через несколько часов. В выработках свыше 250-300 м. увеличение притока на некоторых месторождениях наступает через 2 и более месяца. Так в более глубоких шахтах сезонные колебания притока проявляются слабо: например, наблюдения показало, что на одной из шахт Донбасса на горизонте (глубина) 560 м. средний водопроток составлял 180 м3/час, а максимальный весенний не превышал 220 м3/час. На шахте глубиной до 100 м., расположенной в долине горной реки, притоки воды нарастают после длительных атмосферных осадков.

Величина проникновения осадков в толще горных пород в значительной мере зависит от местных условий. Так в районах развития карстовых пустот толща горных пород зависит от того, в какой климатической области располагается месторождение; в южных областях, с недостаточным увлажнением, чаще распространены слабо обводнённые месторождения, в северных, с избыточным увлажнением, - сильное обводнение. В качестве примера, характеризующего водообильность шахт в зависимости от качества атмосферных осадков, можно привести Карагандинский и Донецкий каменноугольный бассейны, где литологический состав продуктивных свит (слои) карбонат (С) приблизительно сходен.

Подземные воды в обоих бассейнах циркулируют по трещинам песчаников, сланцев и известняков, обладают относительно высокой водопроводящей способностью. Однако, в Карагандинском бассейне, характеризующимся меньшим количеством осадков и высокой испаряемостью, водообильность шахт примерно в два-три раза ниже, чем в Донецком (в Донбассе в среднем выпадает около 400 мм, причём в Карагаганде максимальное количество осадков выпадает в июне-июле, когда большая часть их расходуется на испарение).

2.Форма рельефа дневной поверхности очень существенно влияют на степень обводнения месторождений, отражаясь на условиях циркуляции и глубине залегания водоносных горизонтов. Так, число вскрытых водоносных горизонтов и естественный дренаж зависят от глубины вреза местной гидрографической сети. Месторождения, расположенные выше местного базиса эрозии, обычно являются слабо обводнёнными или даже безводными: в однородных геологических условиях месторождения или на отдельные участки, залегающие под долинами рек, балок и других понижений, могут оказаться более сильно обводнёнными. Значительное увеличение притока воды в горные выработки в периоды паводков и интенсивного выпадения затяжных дождей часто наблюдаются в шахтных полях, сильно изрезанных овражно-балочной системой.

В месторождениях расположенных в горной пересечённой местности, различные рудные, шахтные поля при одном и том же геологическом строении характеризуется резко отличной степенью обводнения в зависимости от их гипсометрического положения. Например, в месторождениях Каратау (Казахстан), где в течении года выпадает всего 180-250 мм осадков, при огромной испаряемости, в следствие сильной расчленённости горного рельефа и развития в долинах трещиноватых закарстованных известняков и доломитов, интенсивно поглощающих осадки, выработками вскрыты мощные водоносные горизонты с высокодебитными пресными источниками.

3. Источником обводнения выработок является вода поверхностных водоёмов и водотоков, расположенных вблизи горных выработок. Такое соседство приводит иногда к катастрофическим водопротокам в карьер приносящим огромные убытки и сопровождающимся даже гибелью людей.

4. К слабоводопроницаемым покровным отложениям относятся главным образом суглинки четвертичного возраста. Если отложения доказанного типа широко развиты в районе месторождения, имеют выдержанную мощность (не менее 5 м.) и надёжно перекрывают с поверхности залегающие ниже водопроницаемых толщи пород, то инфильтрация атмосферных и поверхностных вод через них происходить почти не будет. Покровные суглинки становятся более водопроницаемыми лишь в том случае, когда они имеют сравнительно рыхлое сложение или содержат значительный процент песчаных частиц.

При больших по мощности подработках и многолетнем существованием горных выработок покровные водоупорные отложения изменяют свою структуру и начинают пропускать воду. Кроме того, в связи с обрушением выработанных участков местами возникают открытые трещины, через которые поверхностная вода может проникать в подстилающие водопроницаемые породы свободно в больших количествах. Но иногда даже после обрушения пород в кровле выработок и связанного с этим частичного разрыхления покровных суглинков последние продолжают оставаться хорошим водоупором. По степени обнажённости коренных пород месторождения подразделяются на открытые и закрытые. Открытыми, или обнажёнными, называется такие месторождения, в которых коренные породы, залегающие в кровле, или полезное ископаемое выходят на поверхность и составляют значительную величину от разведанной площади. Степень обнажённости месторождений может быть самой разнообразной и колеблется от долей до нескольких десятков процентов по отношению ко всей площади месторождения.

Открытыми часто являются месторождения полиметаллов. Через открытые участки площади месторождения, если они представлены водопроницаемыми породами, может происходить поглощение поверхностных вод, которые в дальнейшем достигают горных выработок.

Величина поглощения воды при таком виде питания будет полностью обуславливаться фильтрационными свойствами пород кровли и местными физико-географическими условиями. При наличии водоносных горизонтов, имеющих непосредственную связь с поверхностью, сезонные колебания водопритоков проявляются довольно резко: при этом наибольшие водопритоки приходятся на весеннее время (весенний паводок) и наименьшее – на зимнее.

5. Поступление подземной воды на горные выработки зависит от литологического состава обнажённых выработками пород. Наибольшее количество воды в единицу времени, как известно, пропускают крупнее карстовые каналы, затем трещины и поры. Следовательно, наибольшее количество воды способны пропустить выщелачивающиеся и растворяющиеся породы. К первым относятся известняки, мел, мергели, доломиты, гипс и ангидрит, ко вторым – поваренная соль и калийные соли.

Разработка полезных ископаемых, залегающих в толще закарстованных пород – очень сложная задача, а местами и вовсе невозможным. Наибольший вред вода приносит при разработке соляных месторождений. Здесь даже незначительные притоки воды могут привести к гибели рудника и поэтому должны внимательно изучить гидрогеологические условия таких месторождений.

Обводнение горных выработок тесно связано с выдержанностью литологического состава пород. Так, при смене глинистых фаций песчаными выработками, бывшие ранее сухими или слабо обводнёнными могут оказаться более обводнёнными причём иногда в выработке вместе с водой могут выноситься мелкие песчаные и глинистые фации. Например, Ленгерское буроугольное месторождение, отличающиеся исключительной фациальной невыдержанностью, характеризуется повышенными притоками воды и прорывами плывунов при встрече слабо сцементированных песчаников, особенно в зоне тектонических нарушений. На одном из рудных месторождений Урала наибольшие водопритоки приходятся на выработки, имеющую глубину 70-80 м; с увеличением глубины водопротока заметно уменьшаются. Уменьшение водопротока в выработки с глубиной обусловлено изменением трещиноватости водоносных пород; с увеличением глубины уменьшается степень трещиноватости пород, поэтому снижается и величина водопротока.

На некоторых жилах месторождений в горные выработки могут поступать восходящие термальные воды, обладающие высокой температурой, то является серьёзным препятствием при разработке полезных ископаемых на глубину. Поступление больших молей воды в горные выработки связано с особенностями тектоники района. Внезапные прорывы больших количеств воды могут быть обусловлены выходом воды их тектонических зон (трещин) в скальных породах. Зоны тектонических нарушений служат проводниками и коллекторами подземных вод.

По тектоническим зонам более интенсивно осуществляется гидравлическая связь различных водоносных горизонтов. На некоторых месторождениях эта связь распространяется вплоть до поверхностных вод. Тектонические трещины, пересекающие несколько водоносных горизонтов, даже при отсутствии связи с поверхностными водами могут в течение длительного времени давать большое количество воды. Тектонические нарушения нередко бывают причиной внезапных прорывов больших масс воды.

6. При строительстве и эксплуатации шахт и карьеров формируется техногенный режим подземных вод, который определяется, прежде всего, тем, что основными контурами разгрузки водоносных горизонтов являются горные выработки и дренажные сооружения. При этом резко изменяется направление естественного потока подземных вод, увеличиваются градиенты подземных потоков, возрастают сезонные колебания уровней. Наряду с появлением новых техногенных контуров дренажа заметно изменяются условия питания водоносных горизонтов.

Усиленное дренирование подземных вод вызывает развитие процессов протекания из смежных с ними водосточных пластов.

Техногенный режим подземных вод отличает изменчивость водопротоков в горные выработки и уровней водоносных горизонтов во времени. Как правило, водопротоки будут снижаться со временем вследствие постепенного истощения ответственных запасов подземных вод, систематического снижения уровней дренирующих пластов.

Наличие воды в подошве и уступах карьера – причина размокания и набухания глинистых разностей горных пород и полезного ископаемого, что ограничивает проходимость и производительность горно-транспортных средств.

В бортах карьеров, вскрывают их рыхлые песчано-глинистые породы, подземные воды вызывают оплывание водонасыщенных песков, формирование на подошве карьера языков оплывания, которые затрудняют работу или полностью исключают возможность эксплуатации горно-транспортного оборудования.

Подземные воды, высачивающиеся в бортах карьеров, могут увлажнять полезное ископаемое, снижая его качественные характеристики и затрудняя его транспортировки в зимний период.

При обосновании рациональной степени дренирования вскрываемых карьером рыхлых песчано-глинистых отложений, следует исходить из величины допустимого притока воды к откосу.

Подземные воды оказывают существенное влияние на напряжённое состояние обводнённого прибортового массива горных пород; в результате ухудшается условие устойчивости бортов карьеров или отдельных уступов. Обводнённый массив горных пород характеризуется в каждой точке по вертикали полными, эффективными и нейтральными напряжениями.

Рис. 2. Схема учёта влияния подземных вод на устойчивость открытых горных выработок
Обычно максимальное влияние на устойчивость бортов карьера подземные воды оказывают в том случае, когда месторождение сложено слабопроницаемыми породами. Влияние гидродинамического давления на устойчивость бортов карьеров особенно велико для месторождений, сложенных прочными полускальными породами. При оценке устойчивости бортов карьеров совместное действие объёмных сил гидростатического взвешивания и гидродинамического давления может быть учтено давление. Расчётная схема предусматривает разбиение участка прибортового массива, заключённого между линией откоса и потенциальной поверхностью скольжения на ряд вертикальных элементарных блоков (рис.2)

Нормальную составляющую сил нейтрального давления, действующую в пределах каждого блока, определяют по формуле:

,

где - плотность воды

1- Линия откоса, 2- поверхность скольжения, 3- депрессионная кривая, Pi - вес элементарного блока; Ti – тангенциальная составляющая веса, Ni - нормальная составляющая веса, 0-0 – плоскость сравнения, Hi - напор на потенциальной поверхности скольжения в пределах элементарного блока – I, аi – угол наклона потенциальной поверхности скольжения в пределах блока шириной аi.

Месторождения, в разрезе которых преобладают рыхлые песчаные водонасыщенные породы, являются трудными для эксплуатации. При вскрытии таких пород в выработке вместе и водой наступает и водосодержащая порода. Этот процесс, если его не приостановить, приводит к обвалам, оплыванием и другим нарушениям пород кровли и подошвы горных выработок.

Нередко причиной прорыва плывунов являются тектонические нарушения. В некоторых случаях деформации наблюдаются и в почве выработок. Здесь они обычно возникают под влиянием давления нижележащих напорных вод на слой водоупорных глин небольшой мощности. В открытых котлованах (карьерах) напорные воды могут прорывать водопроницаемые пласты и либо изливаться из трещин разрыва.

Рудники, карьеры, разрабатывающие горизонты полезных ископаемых, лежащие выше коренных бортов ближайших долин, обычно обводняются слабо. Совершенно иная картина наблюдается в том случае, если зоны трещин выветривания располагается ниже местного базиса эрозии и имеет связь с долинами рек или выполняющими их аллювиальными обводнёнными отложениями. Через такие трещины из бортов долин в выработки могут поступать больше массы воды.

При вскрытии тектонических трещин или зоны тектонических трещин, буровыми скважинами наблюдаются следующие явления. В скважинах, заложенных на более высоких отметках, происходит быстрая и резкая потеря промывочной жидкости (глинистого раствора), скважины, пройденные на пониженных участках, дают самоизливающуюся воду.

Питанием трещинных вод происходит за счет инфильтрации атмосферных осадков, поступающих с поверхности через систему трещин в зонах выветривания и обрушения, связанных на некоторой глубине с тектоническими трещинами. В пределах речных долин и межгорных котловин поступление воды в тектонические трещины возможно и из аллювиальных и других отложений.

Общее количество воды, которое будет поступать в горные выработки, определяется в процессе разведке месторождения в целях выявления в степени его обводнённости и установления в целях выявления степени его обводнённости и установления необходимой производительности насосных установок. Определение количества воды, которое может поступать в горные выработки, является одной из самых сложных задач рудничной гидрогеологии. Все проводимые на месторождениях гидрогеологические изыскания, нередко сопровождаемые значительным объёмом опытных полевых работ и лабораторными исследованиями, имеют назначение выявить гидрогеологические условия месторождения и степень его обводнённости.

Эксплуатация сильно обводнённых месторождений полезных ископаемых открытых или подземным способом в широких масштабах возможно только при условии предварительного проведения полного объёма осушительных мероприятий.

При подземном способе разработки в проекте осушительных мероприятий необходимо учитывать: 1) возможно более полное осушение пород кровли; 2) снижение пьезометрического напора вод на 1-2 м ниже подошвы горных выработок или до пределов, при которых катастрофические прорывы подземных вод в выработки становятся невозможными.

Осушительные мероприятия должны проводиться с некоторым опережением по отношению к горным работам. Сроки осушения шахтных полей обуславливается как скорость проходки, так и характером водопроводимости геологического разреза. Степень обводнённости месторождения можно охарактеризовать общим количеством воды, удаляемой из рудника, карьера, но эта характеристика не даёт представления об объёме горных выработок в которые поступает вода и не отражает количество добываемого полезного ископаемого.

Поэтому нередко при оценке водопротока в горные выработки предпочитают пользоваться так называемым коэффициентом водообильность или же относят величину водопротока к объёмной, квадратной или линейной величине выработок: на отдельных месторождениях приток воды относится к 100 и 1000 м2 площади горных выработок. Существует следующие приближённые методы определения будущих водопротоков.

1) по коэффициенту водообильности.

2) По водному балансу.

3) По формулам динамики подземных вод

4) На основе гидродинамического анализа.

Оценка этих способов и пределов их применения в зависимости от геологического строения, гидрогеологических условий, системы разработки, полезных ископаемых и ряда других факторов. Необходимо отметить, что в настоящее время нет законченных свободных решений по теории водопротоков к горным выработкам в связи со сложностью и разнообразием гидрогеологических обстановок и условий в различных типах месторождений полезных ископаемых.

На ряде рудников притоки воды возрастают прапорционально увеличению площади горных выработок. В связи с этим наметив в новом шахтном поле площадь первоочередной отработки можно рассчитать для неё возможный водоприток по следующей схеме.

Обозначим среднее проектное понижение уровня подземных вод, которое должно быть достигнуто на шахтном поле, через S, а площадь первоочередной отработки будущего рудника через F. Допустим, кроме того, что фактический дебит действующего рудника площадью F составляет величину Q при созданном уже понижений S.

Тогда фактический единичный приток воды на 1 м2 площади разработок при понижении уровня 1 м получается путём деления единичного расхода g на понижение уровня S.

Тогда фактический единичный приток на действующем руднике, т.е. приток, отнесённый к 1 м2 площади разработок составляет:

м3/час или л/час

Средний фактический приток воды на 1 м2 площади разработок при понижении уровня 1м получается путём деления единичного расхода g на понижении уровня S:

Будущий суммарный приток Q выражается как произведение фактического удельного притока g0 на площадь запроектированных подготовительных выработок F1 и на заданное понижение уровня S1,

Эта схема расчёта водопротока является приближённой.

Определение водопротоков по коэффициенту водообильности: , где:

Q – количество откаченной воды, Р – количество добытого за тот же срок полезного ископаемого (в тоннах). Чаще всего коэффициент водообильности определяют по месячным или годовым данным. Значение коэффициента водообильности для различных рудников колеблется в весьма широких пределах: от 1-2 до 40 и более.

При открытых разработках особую роль играют также методы борьбы с подземными водами:

1) Поверхностный горизонтальный дренаж.

2) Отвод рек за пределы карьерных полей.

3) Глубокое водопонижение.

4) Комбинированное осушение.

Поверхностный горизонтальный дренаж применяются в тех случаях, когда основной обводняющий горизонт залегает с поверхности и перекрывает продуктивную толщу.

Отвод рек за пределы карьерных полей осуществляется в том случае, когда продуктивный залежь встречается в эрозионных врезах, т.е. в долинах рек. Поэтому строится крупный отводящий канал.

Глубокое водопонижение осуществляется при помощи артезианских турбинных насосов.

Комбинированное осушение месторождения осуществляется сооружением ряда дополнительных дренажных устройств (например, трубчатые водопонизительные штреки, сквозные и забивные фильтры, горизонтальные сифонные фильтры, дренажные шурфы, поглощающие скважины, водоподъёмные насосы и т.д.).

Контрольные вопросы:

1. Почему происходит затопление дна карьера Богач?

2. Как происходит фильтрация воды в породе?

3. Почему часто происходит затопление карьеров?

4. Почему неодинакова скорость фильтрации воды в породах?

5. Всегда ли атмосферные осадки являются источником для грунтовых вод?

6. В каких случаях месторождения считается слабо обводнёнными?

Литературы:

1. Якушева А. Ф. «Общая геология». М. Недра 1988.

2. Мельничук В. И. «Общая геология». М. Недра 1989.

3. Ершов В. В. «Основы геологии». М. Недра 1986.

4. Иванова М. Ф. «Общая геология». М. Недра 1974.

5. Панюков П. Н. «Основы геологии». М. М. Недра 1978.

Лекция № 15





Дата публикования: 2015-09-17; Прочитано: 993 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.031 с)...