![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
1. Мотор
2. МУВП
3. Редуктор С2
4. Предохранительная фрикционная компенсирующая муфта
5. Приводной вал с 2-мя звездочками
1.1 Определение расчетной мощности на валу исполнительного механизма .
Мощность на приводном валу Р3, кВт,
,
где Ft – окружное усилие на приводном валу, Н;
V – окружная скорость на приводном валу, м/с.
1.2 Определение расчётной мощности на валу электродвигателя.
Расчётная мощность на валу двигателя Р1 определяется с учётом потерь в приводе:
где η – общий КПД привода,
η = η1·η2;
η1– КПД закрытой зубчатой цилиндрической передачи, η1=0,97;
η2– КПД закрытой зубчатой цилиндрической передачи, η2=0,97;
Согласно [1, стр8 табл.1]
η = 0,97·0,97=0,9409.
При этом
1.3 Определение частоты вращения вала исполнительного механизма
Частота вращения приводного вала n3, об/мин,
где Z- число зубьев ведущей звездочки цепного конвейера;
t- шаг цепи цепного конвейера, мм.
.
![]() |
1.4 Определение частоты вращения вала электродвигателя
Частота вращения вала электродвигателя n1, мин-1:
n1= n3·ί,
где n3 – частота вращения приводного вала, n3 =105 мин-1;
ί – передаточное отношение привода.
ί =ί1·ί2
Согласно [1, стр10, табл. 2] передаточное отношение для зубчатой закрытой цилиндрической передачи:
ί1=3…6
ί2=3…6.
ί =(3…6)*(3…6)=9…36
Тогда n1= 105*(9…36)=945…3780.
Так как в мотор- редукторах с фланцевым консольным креплением редуктора к электродвигателю, установленному на плите на лапах, для уменьшения габаритов редуктора частоту вращения вала электродвигателя следует выбирать близкой к среднему значению найденного интервала оптимальных частот примем
n1=1.500 мин -1.
1.5 Выбор электродвигателя
В приводах общего назначения применяются в основном трёхфазные асинхронные электродвигатели переменного тока с короткозамкнутым ротором серии 4А, отличающиеся простотой конструкции и эксплуатации, а также низкой стоимостью.
Выбираем двигатель 100L /1410 с T max/T ном.=2,2, n1.=1410мин-1.
![]() |
Число полюсов | d1 | l1 | l30 | b1 | h1 | d30 | l10 | l31 | l0 | b10 | h | h10 | h31 |
2,4,6 |
1.6 Определение передаточного отношения привода
После выбора электродвигателя уточним передаточное отношение привода:
1.7 Определение мощностей, вращающих моментов и частот вращения валов.
Определение мощности на быстроходном валу редуктора Р2, кВт,
где Р1– мощность на валу электродвигателя, Р1=3,72кВт;
η1– КПД закрытой зубчатой цилиндрической передачи, η1=0,97;
Определение вращающих моментов на валах:
где Р1– мощность на валу двигателя, кВт;
n1 – частота вращения вала, мин-1;
Определение вращающего момента на быстроходном валу редуктора Т2, Н·м,
где Р 1–мощность на валу двигателя, кВт;
η1– КПД закрытой зубчатой цилиндрической передачи, η1=0,97
n2-частота вращения на быстроходном валу редуктора мин-1,
Определение вращающего момента на приводном валу Т3, Н·м,
где Р2– мощность на быстроходном валу, кВт;
n3 – частота вращения вала, мин-1;
η1– КПД закрытой зубчатой цилиндрической передачи, η1=0,97
![]() |
Все полученные данные для проектирования на ЭВМ сводим в таблицу1.
таблица1
№ вала | Т, Н·м | Р, кВт | n, мин-1 |
25,19 | 3,72 | ||
111,25 | 3,61 | 309,75 | |
318,3 | 3,5 |
![]() |
1.8 Выбор материалов и допускаемых напряжений дляцилиндрической зубчатой передачи.
Материал зубчатых колес должен обеспечить высокую прочность зубьев на изгиб и износостойкость передачи. Этим требованиям отвечают термически обрабатываемые углеродистые и легированные стали.
Нагрузочная способность передач редукторов лимитируется контактной прочностью. Допускаемые контактные напряжения в зубьях пропорциональны твердости материалов, а несущая способность передач пропорциональна квадрату твердости. Это указывает на целесообразность широкого применения для зубчатых колес сталей, закаливаемых до высокой твердости.
Наибольшую твердость зубьев Н=55…60 HRC обеспечивает химико- термические упрочнения: поверхностное насыщение углеродом с последующей закалкой.
Поэтому примем в качестве термообработки цементацию, что обеспечит высокую нагрузочную способность.
Согласно источнику [1, стр22 табл.7] цементации соответствуют материалы:
Шестерня- 20Х ГОСТ 4543-71
Колесо- 15Х ГОСТ 4543-71
Сочетания материала зубчатых колес, их термообработка и пределы контактной и изгибной выносливости.
Твердость поверхности зубьев,HRC:
шестерня- 55…60
колесо- 55…60.
Твердость сердцевины, НВ:
шестерня-230…240
колесо – 230…240.
Предел контактной выносливости, МПа:
.
Предел изгибной выносливости, МПа:
Допускаемое контактное напряжение , МПа:
где σHlim b1,σHlim b2- пределы контактной выносливости поверхностей зубьев шестерни и колеса;
σHlim b =23*55=1265 МПа
S Hmin- минимальный коэффициент запаса прочности
При поверхностном упрочнении зубьев: S Hmin= 1,2
– коэффициент долговечности;
Согласно источнику [1, стр21] =1, с последующим уточнением после ЭВМ.
Принимаем = 949 МПа.
1.9 Коэффициент ширины зубчатого венца в долях диаметра шестерни.
Где bW-рабочая ширина зубчатых венцов,
dW1- начальный диаметр шестерни.
Согласно источнику [1, стр33, табл. 14]:
ψbd=0,3…0,6
Принимаем ψbd2=0,6
1.10 Коэффициент K Hβ.
Коэффициент K Hβ. Учитывает неравномерность распределения нагрузки по длине контактных линий при расчете на контактную выносливость активных поверхностных зубьев.
Согласно источнику [1, стр34, рис. 10] принимаем:
K Hβ2=1,12
1.11 Исходные данные для расчета на ЭВМ.
ί – передаточное отношение привода
ί=13,43
Т1-вращающий момент на тихоходном валу
Т1= 318,3 Н*м
- допускаемое контактное напряжение в быстроходных и тихоходных передачах.
=949МПа
ψbd2- коэффициент ширины зубчатого венца
ψbd2=0,6
K Hβ2- коэффициент, учитывающий неравномерность распределения нагрузки
K Hβ2=1,12
Количество потоков мощностей 1;
Вид зубьев – косозубые.
1.12 График зависимости массы от
Дата публикования: 2015-07-22; Прочитано: 293 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!