Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Методы оптимизации АСОИУ как систем



“человек - машина -среда”.

I. Виды задач оптимизации и их общая постановка.

В процессе проектирования АСОИУ, как системы “человек-машина-среда”, ставится задача получения в системе такой совокупности эргономических свойств (эргономического качества), которая бы отвечала заданным требованиям эргономичности системы, т.е. система была бы в определённом смысле оптимальной.

Анализ конкретных задач, возникающих на этапах проектирования АСОИУ, показывает следующее:

1. Многие задачи проектирования автоматических технологических процессов обработки информации и управления, в которых не участвует персонал системы, представляют непрерывные задачи оптимизации.

2. Большая часть организационного, структурного, надёжностного проектирования АСОИУ - это дискретные задачи оптимизации.

В общем задача оптимизации считается сформулированной строго, если:

--- задана целевая функция Z= f(xi) ® min(max) и задан вид функции

взаимосвязиf(xi) с переменными xi (i= 1,n), которые отражают эргономические характеристики системы.

--- заданы граничные условия на возможный диапазон изменения переменных ximin £ xi £ ximax.

--- заданы ограничения на ряд эргономических характеристик

gi (xi) <> bj (j=1,m), изменяющиеся с изменением xi.

II. Задача оптимизации распределения функций

Примером постановки организационной дискретной задачи оптимизации может служить задача распределения функций обработки информации и управления между АРМами, входящих в АСОИУ.

Для постановки задачи вводятся булевы переменные

{ 1,если i-я функция возлагается на j-й АРМ

xij = {

{ 0, в противном случае (i=1,n, j=1,m)

Если обозначить:

cij- затраты на выполнение i-й функции j-м АРМ;

cj доп - допустимые затраты на выполнение всех функций -м АРМ;

c доп - суммарные допустимые затраты на выполнение всех автоматизированных функций;

tij - время, необходимое на выполнение i-ой функции j-ым АРМ;

t j доп - допустимое время выполнения j-м АРМ всех функций;

t доп - суммарное допустимое время на выполнение всех автоматизированных функций;

то в качестве целевой функции могут быть приняты:

--- суммарные затраты на выполнение всех функций системы

åij cijxij ® min

--- общее время выполнения всех функций системы

åijtijxij® min

Параметры xij выбираются при следующих ограничениях:

n m n

--- å å cij xij £ cдоп или å cijxij £ cj доп

i=1 j=1 i=1

n m m

--- å å tijxij £ tдоп или å tijxij £ ti доп

i=1 j=1 j=1

Такая дискретная задача оптимизации решается путём использования методов целочисленного программирования и ряда эвристических правил.

III. Задача оптимизации процесса функционирования.

1. Рассмотрим пример постановки функциональной дискретной задачи оптимизации процесса функционирования (ПФ) ЧМС, т.е. пример функциональной оптимизации ПФ. Цель решения задачи функциональной оптимизации - получение оптимального, в смысле выбранной целевой функции (безошибочности - ba1® max, быстродействия - Ма(Т) ® min, ритмичности Da(T) ® min), варианта алгоритма ПФ ЧМС, представленного либо в виде функциональной сети (графа работ) или в виде полумарковского процесса (графа событий).

Ограничениями в данной задаче могут быть:

--- при целевой функции ba1® max ограничения:

Ma(T) £ Mа.доп(T), Da(T) £ Dа.доп(T)

--- при целевой функции Ма(Т) ® min ограничения:

ba1 ³ ba.доп1, Da(T) £ Dа.доп(T)

--- при целевой функции Dа(T) ® min ограничения:

ba1 ³ ba.доп1, Ma(T) £ Mа.доп(T)

Задача функциональной оптимизации ПФ ЧМС решается методом линейного или частично целочисленного программирования, которые можно реализовать на ЭВМ при относительно “коротком” алгоритме с использованием существующего программного обеспечения.

2. Ещё одной целевой функцией, по которой может быть оптимизирован ПФ ЧМС является сложность алгоритма реализации ПФ

N M

D= (å aini + å bjmj) ® min,

i=1 j=1

где: ai - сложность ТФС i-го вида; ni - число ТФС i-го вида, входящих в алгоритм; N - общее число видов ТФС, входящих в алгоритм; bj - сложность логического условия j-го типа; mj - число логических условий j-го типа, входящих в алгоритм; М - общее число типов логических условий, входящих в алгоритм.

Сложность реализации алгоритма ПФ ЧМС может быть оценена по степени неоднородности его структуры, т.е. состава ТФС и логических условий, а также связей между ними. Задача уменьшения неоднородности состава алгоритма может быть сформулирована в одной из следующих постановок:

Достичь D® min при ограничении на число видов ТФС N £ Nдоп

Достичь D® min при ограничении на число типов условий M £ Mдоп

Достичь D® min при ограничении как на N, так и на М, т.е. (N+M) £ S, где S - допустимое суммарное число видов ТФС и типов логических условий.

IV. Общая постановка задач оптимизации.

Приведённые постановки однокритериальных задач оптимизации распределения функций, процесса функционирования и сложности алгоритма являются частными случаями двух общих задач оптимизации АСОИУ как системы Ч-М-С, которые могут быть сформулированы с введением следующих понятий и обозначений:

Мс - модель структуры системы; Мф - модель функционирования системы; Мр - модель ресурсов, требуемых для обеспечения функционирования системы; Мц - модель цели функционирования системы; Gцц) - векторный функционал, характеризующий степень достижения функционирования системы; Gрр)- векторный функционал, характеризующий степень использования ресурсов для обеспечения функционирования системы.

Формулировка первой общей задачи:

найти вариант <Мс, Мф>, такой,что Gрр) ® min при Gцц) ³ Gц.доп

Формулировка второй общей задачи:

найти вариант <Мс, Мф>, такой,что Gцц) ® max при Gрр) £ Gр.доп

В такой широкой формулировке эти оптимизационные задачи могут быть решены методом диалогового программирования с использованием систем интеллектуальной поддержки разработчика или экспертных систем.

Указанное обстоятельство обусловлено рядом причин, основными из которых являются:

--- многокритериальность целей функционирования АСОИУ;

--- размытость обобщённых критериев оценки как системы в целом, так и отдельных её частей;

--- недостаток и недостоверность исходных данных для решения задач оптимизации,особенно на ранних стадиях проектирования;

--- размерность и динамичность самих моделей Мс, Мф, Мц и Мр.

Однако пока ещё далека от решения проблема автоматизации эргономического обеспечения проектирования АСОИУ, что затрудняет решение задач её оптимизационного проектирования и что частично компенсируется использованием эвристических приёмов и метода экспертных оценок.





Дата публикования: 2015-04-10; Прочитано: 276 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...