Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Основные характеристики газовых смесей



Для того чтобы воспользоваться уравнением Менделеева-Клапейрона для смеси газов

 


необходимо знать газовую постоянную RСМ и молярную массу (условную) смеси µСМ. Для смеси, как для любого идеального газа, эти две величины связаны соотношением RСМ=8314/µСМ (Дж/(кг•К)). Чтобы рассчитать эти величины, необходимо знать состав смеси газов, т.е. какие газы и в какой пропорции входят в смесь.

Состав смеси может быть задан массовыми, объемными или мольными долями.

Массовой долей gi данного газа называется отношение его массы к массе всей смеси:

(4.67)

где mi – масса отдельного газа, входящего в смесь;
mСМ – общая масса смеси.

Очевидно, что сумма массовых долей всех газов смеси равна единице:

(4.68)

Объeмной долей ri данного газа называется отношение объема, который занимал бы данный газ при температуре и давлении смеси, к общему объему смеси:

(4.69)

где Vi – объем данного газа при ТСМ и РСМ, м3.

Объем Vi называют парциальным объемом, это искусственно введенная величина, поскольку каждый газ, входящий в смесь, занимает весь объем смеси. Парциальный объем можно рассчитать по уравнению Менделеева – Клапейрона:

(4.70)

Записав уравнение Менделеева – Клапейрона через парциальное давление и через парциальный объем,

 

можно получить еще одно расчетное выражение для объемной доли, поделив правые и левые части этих уравнений одно на другое:

(4.71)

Поскольку сумма парциальных давлений равна давлению смеси, то сумма объемных долей всех газов смеси равна единице, а сумма парциальных объемов равна полному объему всей смеси газов:

(4.72)
(4.73)

Для смеси газов используется понятие мольных долей. Мольной долей называется отношение количества молей данного газа Мi к общему количеству молей всех газов смеси МСМ.

Количество молей определяется делением массы газа на его молярную массу:

(4.74)

Воспользовавшись уравнением Менделеева – Клапейрона для парциального и полного объемов смеси газов и введя в него количество молей

 
 

получим еще одно расчетное выражение для мольной доли:

(4.75)

Равенство объемных и мольных долей для смеси газов можно получить и из закона Авогадро, в соответствии с которым объемы молей всех идеальных газов при одинаковых параметрах одинаковы, т.е. число молей при одинаковых параметрах идеальных газов прямо пропорционально полным объемам этих газов: Vμ i=Vii=VСМСМ=Vμ СМ.

Существует взаимосвязь массовых и объемных долей смеси. Ее несложно получить, выразив массы газов через произведение их объемов на плотности, а отношение плотностей при одинаковых параметрах, в соответствии с законом Авогадро, заменив отношением молярных масс:

(4.76)

Уравнение (4.76) позволяет получить расчетные выражения для молярной массы и газовой постоянной смеси газов на основании равенства единице суммы массовых и объемных долей всех газов данной смеси:

(4.77)
(4.78)

При известной молярной массе смеси газовую постоянную смеси проще определить из соотношения

 

Для определения парциального давления данного газа в смеси можно воспользоваться выражением (4.71). В соответствии с ним

ТЕПЛОЁМКОСТЬ ГАЗОВ

Массовая, объёмная и мольная удельные теплоёмкости

Известно, что подвод теплоты к рабочему телу или отвод теплоты от него в каком-либо процессе приводит к изменению его температуры. Отношение количества тепло­ты, подведенной (или отведенной) в данном процессе, к изменению температуры называется теплоемкостью тела (системы тел):

, (2.1)


где — элементарное количество теплоты; — элементарное изменение температуры.

Теплоемкость численно равна количеству теплоты, которое необходимо подвести к системе, чтобы при заданных условиях повысить ее температуру на 1 градус. Так как единицей количества теплоты в СИ является джоуль, а температуры — градус К, то единицей теплоемкости будет Дж/К.

В зависимости от внешних условий и характера термодинамического процесса теплота может либо подводиться к рабочему телу, либо отводиться от него. Учитывая, что система участвует в бесчисленном множестве процессов, сопровождающихся теплообменом, величина для одного и того же тела может иметь различные значения. В общем случае значение теплоёмкости лежит в интервале от -∞ до +∞, то есть она может быть любой положительной или отрицательной величиной.

Поэтому обычно в выражении (2.1) при теплоёмкости указывается индекс "x", который характеризует вид процесса теплообмена

. (2.2)


Индекс "x" означает, что процесс подвода (или отвода) теплоты идет при постоянном значении какого-либо из параметров, например, давления , объема или других.

Ввиду того, что в термодинамике обычно рассматриваются квазистатические процессы теплообмена, теплоемкость является величиной, относящейся к системе, которая находится в состоянии термодинамического равновесия. Таким образом, теплоемкости являются функциями параметров термодинамической системы. Для простых систем — это функции каких-либо двух из трех параметров: , , .

Опыты показывают, что количество теплоты, подведенное к рабочему телу системы или отведенное от него, всегда пропорционально количеству рабочего тела. Для возможности сравне­ния вводят, как известно, удельные величины теплоемкости, относя подведенную (или отведенную) теплоту количественно к единице рабочего тела.

В зависимости от количественной единицы тела, к которому подводится теплота в термодинамике, различают массовую, объемную и мольную теплоемкости.

Массовая теплоемкость — это теплоемкость, отнесенная к единице массы рабочего тела,

.


Единицей измерения массовой теплоемкости является Дж/(кг • К). Массовую теплоемкость называют также удельной теплоемкостью.

Объемная теплоемкость — теплоемкость, отнесенная к единице объема рабочего тела,

,


где и — объем и плотность тела при нормальных физических условиях.

Объемная теплоемкость измеряется в Дж/(м3 • К).

Мольная теплоемкость — теплоемкость, отнесенная к количеству рабочего тела (газа) в молях,

, (2.3)


где — количество газа в молях.

Мольную теплоемкость измеряют в Дж/(моль • К).

Массовая и мольная теплоемкости связаны следующим соотношением:


или

, (2.4)


где - молекулярная масса.

Объемная теплоемкость газов выражается через мольную как


или

, (2.5)


где м3/моль — мольный объем газа при нормальных условиях.

2.2.Средняя и истинная теплоёмкости

Учитывая, что теплоемкость непостоянна, а зависит от температуры и других термических параметров, различают истинную и среднюю теплоемкости. Истинная теплоемкость выражается уравнением (2.2) при определенных параметрах термодинамического процесса, то есть в данном состоянии рабочего тела. В частности, если хотят подчеркнуть зависимость теплоёмкости рабочего тела от температуры, то записывают её как , а удельную – как . Обычно под истинной теплоёмкостью понимают отношение элементарного количества теплоты, которое сообщается термодинамической системе в каком-либо процессе к бесконечно малому приращению температуры этой системы, вызванному сообщенной теплотой. Будем считать истинной теплоёмкостью термодинамической системы при температуре системы равной , а - истинной удельной теплоёмкостью рабочего тела при его температуре равной . Тогда среднюю удельную теплоёмкость рабочего тела при изменении его температуры от до можно определить как

(2.6)


Обычно в таблицах приводятся средние значения теплоемкости для различных интервалов температур, начинающихся с . Поэтому во всех случаях, когда термодинамический процесс проходит в интервале температур от до , в котором , количество удельной теплоты процесса определяется с использованием табличных значений средних теплоемкостей следующим образом:

. (2.7)


Значения средних теплоемкостей и , находят по таблицам.

2.3.Теплоёмкости при постоянном объёме и давлении

Особый интерес представляют средние и истинные теплоемкости в процессах при постоянном объеме (изохорная теплоемкость, равная отношению удельного количества теплоты в изохорном процессе к изменению температуры рабочего тела dT) и при постоянном давлении (изобарная теплоемкость, равная отношению удельного количества теплоты в изобарном процессе к изменению температуры рабочего тела dT).

Для идеальных газов связь между изобарной и изохорной теплоёмкостями и устанавливается известным уравнением Майера .

Из уравнения Майера следует, что изобарная теплоемкость больше изохорной на значение удельной характеристической постоянной идеального газа. Это объясняется тем, что в изохорном процессе () внешняя работа не выполняется и теплота расходуется только на изменение внутренней энергии рабочего тела, тогда как в изобарном процессе () теплота расходуется не только на изменение внутренней энергии рабочего тела, зависящей от его температуры, но и на совершение им внешней работы.

Для реальных газов , так как при их расширении и совершается работа не только против внешних сил, но и внутренняя работа против сил взаимодействия между молекулами газа, на что дополнительно расходуется теплота.

В теплотехнике широко применяется отношение теплоемкостей , которое носит название коэффициента Пуассона (показателя адиабаты). В табл. 2.1 приведены значения некоторых газов, полученные экспериментально при температуре 15 °С.

Таблица 2.1
Газ Показатель адиабаты
Гелий 1,660
Аргон 1,667
Окись углерода 1,401
Кислород 1,398
Водород 1,408
Азот 1,41
Водяной пар 1,33
Углекислый газ 1,305
Аммиак 1,313
Метан 1,315


Теплоемкости и зависят от температуры, следовательно, и показатель адиабаты должен зависеть от температуры.

Известно, что с повышением температуры теплоёмкость увеличивается. Поэтому с ростом температуры уменьшается, приближаясь к единице. Однако всегда остается больше единицы. Обычно зависимость показателя адиабаты от температуры выражается формулой вида

,


где - значение коэффициента при 00 С; - коэффициент, принимающий для каждого газа своё постоянное значение.

Кроме того, можно установить следующие широко использующиеся зависимости.

, (2.8)


и так как

. (2.9)


2.4. Таблицы теплоёмкости

Данные о теплоёмкостях различных газов приводятся в табличной форме. Обычно в таблицах приводят для различных температур значения мольной истинной и средней теплоёмкости при постоянном давлении и постоянном объёме. Указывают также средние массовые и объёмные теплоёмкости при постоянном объёме и постоянном давлении.

Мольная теплоёмкость указывается в кДж/(кмоль · 0С), массовая – в кДж/(кг · 0С), объёмная – в кДж/(м3 · 0С). При этом значения объёмной теплоёмкости относят к массе газа, заключённой 1 м3 его при нормальных физических условиях.

Для газов, массовая теплоёмкость которых зависит как от температуры, так и от давления, приводят значения удельного объёма и энтальпии 1 кг газа при различных давлениях и температурах. С такого рода зависимостями приходится иметь дело при изучении свойств водяного пара.

2.5.Теплоёмкость смеси рабочих тел (газовой смеси)

Теплоемкость газовой смеси вычис­ляется по составу газовой смеси и теплоемкостям отдельных газов, входящих в данную газовую смесь. Газовая смесь может быть задана массовым, объемным и молярным составом. Пусть смесь газов задана массовым составом, тогда масса смеси

. (2.10)


где — масса i-го компонента, входящего в смесь.

Очевидно, для увеличения температуры газовой смеси на необходимо увеличить температуру на каждого газа этой смеси. При этом на нагревание каждого газа смеси необходимо затратить количество теплоты , где — массовая теплоемкость i-го газа смеси.

Теплоемкость газовой смеси определяется из уравнения теплового баланса

,


где — теплоемкость газовой смеси.

Разделив левую и правую части уравнения на , получим

, (2.11)


где — массовая доля i-го газа, входящего в смесь.

Из выражения (2.11) видно, что теплоемкость смеси газов, заданной массовыми долями (массовая теплоемкость смеси), равна сумме произведений массовых долей на массовую теплоемкость каждого газа.

С помощью аналогичных рассуждений можно найти сходные по структуре с полученным выражением выражения для объёмной и мольной теплоёмкостей газовой смеси.

ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ

3.1.Сущность первого закона термодинамики

Первый закон термодинамики является математическим выражением количественной стороны закона сохранения и превращения энергии в применении к термодинамическим системам. По этому закону теплота может превращаться в механическую работу или, наоборот, работа в теплоту в строго эквивалентных количествах. Это означает, что из данного количества теплоты в случае её полного превращения в работу получается строго определённое и всегда одно и то же количество работы, точно так же, как из данного количества работы при её полном превращении в тепло получается строго определённое и всегда одно и то же количество теплоты.

3.2. Аналитическое выражение первого закона термодинамики для цикла и разомкнутого процесса

Рассмотрим две системы: А и В (рис. 3.1). Предположим, что система А взаимодействует с системой В только в тепловом отношении. Пусть температура системы А выше температуры системы В (TA>TB), тогда разность температур TA-TB приведет к передаче теплоты от системы А к системе В. Запишем уравнение баланса энергии. Подводимая к системе В теплота расходуется на изменение внутренней энергии и на совершение всех видов работы , то есть

Рис. 3.1. К выводу первого закона термодинамии
. (3.1)

Если затрачивается бесконечно малое количество теплоты, при этом совершается бесконечно малая работа и будет бесконечно малым изменение внутренней энергии, то уравнение (3.1) можно записать в виде

. (3.2)

Так как нас интересует только механическая работа, совершаемая при изменении объёма рабочего тела, то естественно интересоваться только той частью подводимого к системе В тепла, которое расходуется на изменение внутренней энергии и на совершение механической работы изменения объёма рабочего тела. Поэтому запишем

, (3.3)

или

. (3.4)

Для 1 кг рабочего тела получим

, (3.5)

или

. (3.6)


Уравнения (3.5) и (3.6) являются математическим выражением первого закона термодинамики.

Для кругового процесса выражение первого закона термодинамики в инте­гральной форме запишется как

. (3.7)


Так как изменение внутренней энергии термодинамической системы не зависит от характера процесса и полностью определяется её начальным и конечным состояниями, то . Следовательно, все количество тепло­ты, подведенное к термодинамической системе или отведенное от нее в таком процессе, полностью расходуется на совершение системой внешней работы

. (3.8)


То есть в круговом термодинамическом процессе теплота и работа взаимопревращаются в эквивалентных количествах. Если бы оказалось, что , то можно было бы осуществить вечный двигатель первого рода — двигатель, который совершал бы работу без затраты энергии.

Таким образом, первый закон термодинамики, указывая на эквивалентность между теплотой и работой, свидетельствует о невозможности создания такой машины, которая бы производи­ла работу, не затрачивая никакой энергии.

3.3. Уравнение первого закона термодинамики для движущегося рабочего тела

Уравнение первого закона для единицы массы стационарного потока (т. е. потока, параметры которого в любом сечении со временем не изменяются) можно вывести с помощью модели, показанной на рис. 3.2.

Рис. 3.2. К выводу уравнения первого закона термодинамики для движущегося рабочего тела

Здесь поток получает теплоту dq, совершает техническую работу dl, а также работу за счет изменения его кинетической энергии d(w2/2) и работу против силы тяжести d(g*h) вследствие изменения его высоты над уровнем моря (h=h2-h1). Кроме того, имеет место работа вталкивания газа p1*v1 и выталкивания p2*v2. Их разность lпр=p2*v2-p1*v1 называют работой проталкивания. Учитывая сказанное можно записать закон сохранения энергии для движущегося рабочего тела

(3.9)

Здесь u – внутренняя энергия рабочего тела.

Так как по определению u+p*v=i, полученное выражение можно переписать следующим образом

 

После интегрирования получим

(3.10)


Выражение (3.10) и есть уравнение первого закона термодинамики для движущегося рабочего тела.





Дата публикования: 2014-10-25; Прочитано: 2412 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.021 с)...