![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Свариваемость — технологическое свойство материалов (металлов) или их сочетаний образовывать в процессе сварки соединения, отвечающие кон-
струкционным и эксплуатационным требованиям к ним. Это определение свариваемости следует отличать от свариваемости как простой возможности получить соединение. В настоящее время принципиально можно соединить сваркой большинство материалов, однако конструктора всегда интересует качество соединений.
Материал в процессе его сварки так или иначе изменяет свои свойства. Эти изменения зависят как от самого материала, его физико-химических свойств, так и от метода и режимов сварки. Причем следует учитывать, что степень воздействия на материал сопутствующих сварке явлений может быть весьма значительной. Поэтому без учета анализа свариваемости того или иного материала, условий, при которых происходит сам процесс сварки, особенностей конструкции сварного изделия или узла конструктор не может выбрать материал для изготовления изделия и рационально проектировать его.
Свариваемость — сложное, комплексное свойство материалов. Его нельзя определить каким-либо одним испытанием, одной методикой. Оценка свариваемости непосредственно связана с характеристикой материала, условиями его эксплуатации. Однако некоторые критерии оценки свариваемости являются достаточно общими для широкого круга металлов и сплавов. Рассмотрим основные из них.
Изменение химического состава и распределение элементов в сварном соединении. Металл при сварке может достаточно сильно нагреваться, а при термических методах происходит его плавление на небольшом локальном участке. В таких условиях химический состав металла изменяется. Степень изменений зависит от химической активности самого металла, состава окружавшей температуры, качества подготовки поверхности металла под сварку, диффузионных процессов в сварочной ванне.
Влияние сварочного нагрева на структуру и механические свойства основного металла. Наиболее заметные изменения структуры и свойств наблюдаются в металлах, имеющих полиморфные превращения. Последние могут протекать с изменением или без изменения объема. Стали перлитного и мартенситного классов, например, относятся к сплавам, обладающим ярко выраженными свойствами полиморфизма с изменением объема структуры в пределах 3—5%. Титановые сплавы претерпевают полиморфные превращения, сопровождающиеся незначительным изменением объема (0,15%); не имеют подобных превращений тугоплавкие металлы и некоторые сплавы цветных металлов.
Вне зависимости от наличия и характера полиморфных превращений различают в сварном соединении три основные области: первая — металл нагрет до температуры выше линии солидуса; вторая — металл нагрет до температур, достаточных для протекания фазовых превращений или процессов рекристаллизации; третья — с температурой ниже температуры протекания этих процессов. Первая область включает в себя собственно шов и зону
![]() |
сплавления; вторая представляет собой зону термического влияния; третья — зону механического или термомеханического влияния. К третьей области примыкает основной металл.
Рис. 26.1.Схема структур в околошовной зоне присварке сталей:/ — зона наплавленного металла; 2 — зона неполного расплавления; 3 — зонаперегрева, 4 — зона нормализации; 5 — зона неполной перекристаллизации; 6 — зона рекристаллизации и высокого отпуска; 7 — зона низкотемпературного отпуска |
На рис. 26.1 приведена схема зон структурных изменений применительно к сварке углеродистой стали. Максимальные изменения структуры металла, его химического состава, а также вероятность возникновения различного рода дефектов наблюдаются в шве и зоне сплавления. Участок перегрева характеризуется существенным увеличением зерна, наличием полных структурных и фазовых превращений. На участке полной перекристаллизации температура нагрева выше температуры фазовых превращений, однако интенсивность превращений меньше, чем на участке перегрева, так же как и меньше время пребывания металла при этих температурах, поэтому существенного увеличения зерна здесь не происходит. В рассматриваемых зонах закаливающихся сплавов возможно образование типичных закалочных структур. Связанное с этим снижение пластичности металла может служить причиной появления таких дефектов, как трещины, способствовать уменьшению прочности изделия.
В зоне частичной перекристаллизации в результате распада закалочных структур отмечается существенное снижение прочности металла, что необходимо учитывать при сварке предварительно термообработанного или наклепанного металла. Аналогичные явления могут наблюдаться в зоне высокотемпературного отпуска. Зона низкотемпературного отпуска и механического влияния характеризуется менее существенными изменениями в металле. В случае сварки металла в отожженном состоянии в этой зоне изменение свойств металла не фиксируется.
Участок основного металла, не подвергшийся расплавлению, структура и свойства которого изменились в результате нагрева при сварке, называют зоной термического влияния. Величина ее зависит от свойств материала, его толщины, способа и режима сварки, характера источников сварочной теплоты. Чем больше, например, концентрация теплоты источника нагрева, выше его температура, скорость сварки, тем меньше зона влияния. Так, при дуговой сварке она меньше, чем при газовой. Минимальная площадь нагрева
достигается при сварке электронным или световым лучами, обеспечивающими высокую концентрацию тепловой энергии.
При снижении прочности материала в зоне высокого отпуска необходимо производить упрочняющую термообработку после сварки. Однако это не всегда возможно. Так, при изготовлении изделий больших габаритов из высокопрочных материалов производить закалку после сварки трудно. Необходимо, кроме того, учитывать большую трудоемкость этой операции, существенные затраты на нее энергии и времени, а также деформацию изделия оттермообработки.
Другим способом повышения конструктивной прочности является физическое упрочнение (нагартовка) шва и зоны термического влияния. Различные варианты упрочняющей механической обработки, однако, применимы далеко не для всех конструкций. Высокая прочность изделий цилиндрической формы обеспечивается применением спиральных швов. При «косом» расположении шва напряжения в нем, как известно, будут ниже, чем при продольном расположении швов.
Местное ослабление механических свойств металла, вызванное сварочным нагревом, компенсируется в ряде случаев утолщением сварных кромок, получаемых методом обработки металлов давлением или химическим фрезерованием. Однако при этом приходится считаться с неизбежным увеличением массы конструкции и расхода металла.
На свойства сварного соединения влияет не только максимальная температура, но и время пребывания металла в области повышенной температуры, так называемый термический цикл.
Структура и механические свойства сварного соединения изменяются не только под влиянием нагрева. Изменения происходят и при механических или термомеханических методах сварки. Часто повышение твердости и снижение пластичности в околошовной зоне происходит вследствие физического упрочнения (наклепа). Подобные явления могут, например, иметь место при холодной и ультразвуковой сварке, когда процесс образования сварного соединения сопровождается значительными пластическими деформациями без существенного нагрева.
В связи с отличием механических свойств сварного соединения и основного металла возникает необходимость в их оценке. Для этого проводят обычные механические испытания, однако образцы часто изготавливают таким образом, чтобы можно было определить механические показатели отдельных зон основного металла, примыкающего к шву, наплавленного металла или сварного соединения.
Наиболее ценными будут данные испытаний сварного соединения. Коэффициент прочности сварного соединения £ = 'с"Рн°госмдиие1Д" тем меньше
а
Дата публикования: 2014-10-25; Прочитано: 1042 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!