Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Глава I. Химия липидов



"То обстоятельство, что наибольшее коли­чество

и наибольшее разнообразие липидов содержится

в самой организованной ткани, а именно,

в нервной ткани, само со­бой говорит о большом

значении их для стоящего на высокой ступени

развития жи­вого организма."

Ф. Б. Штрауб

1. Общая характеристика и биологические функции липидов

Еще совсем недавно биохимия липидов считалась неинтересной и без­надежно запутанной областью. Однако с усовершенствованием и разработ­кой новых методов анализа и разделения липидов (в первую очередь – хроматографии) открылись возможности для их более глубоких исследова­ний.

В повседневной жизни, встречая слово жир, мы тотчас представляем себе жиры, которые обычно употребляем - сливочное масло, маргарин, под­солнечное масло, сало и другие пищевые жиры. Это только немногие при­меры того класса соединений, который биохимики называют липидами.

Часто объединяют понятия "липиды" и "жиры", но это не так. Понятие «липиды» - понятие наиболее широкое. Название одной из групп липидов, а именно жиров, взято для обозначения класса в целом. В липидах, полученных из раз­личных организмов, находят также свободные жирные кислоты, обычно они составляют относительно небольшую часть неомыляемой фракции нейтральных липидов (3%).

Липидам дают довольно расплывчатое определение. Принято говорить, что это нерастворимые в воде и в полярных раствори­телях органические вещества, которые можно извлечь из клеток органи­ческими растворителями - эфиром, хлороформом, бензолом. Определить эту группу соединений более строгим способом не представляется возможным из-за их очень большого химического разнообразия, однако можно сказать, что настоящие липиды – это сложные эфиры многоатомных или специфичес­ки построенных спиртов с высшими жирными кислотами. Кроме названных соединений в состав липидов могут вхо­дить остатки фосфорной кислоты, азотсодержащие соединения, углеводы и другие соединения. Таким образом, липиды - сборная группа органических соединений и поэто­му не имеют единой химической характеристики.

Липиды - природные соединения, обладающие гидрофобными свойствами, они наряду с белками и углеводами составляют основную массу органического вещества живых клеток и тканей, присутствуют в животных, расти­тельных и бактериальных клетках. В организме высших животных и чело­века их содержание в различных органах и тканях неодинаково. Наиболее богата липидами нервная ткань, в которой содержание липидов составляет до 50% сухого веса, основные из них фосфолипиды и сфингомиелины (30%), холестерол (10%), ганглиозиды и цереброзиды (7%). В пе­чени общее количество липидов в норме не превышает 10-13%, в жировой ткани жиры составляют до 75% сухого веса. Данные соединения, являясь струк­турным компонентом мембранных липопротеинов, составляют не менее 30% общей сухой массы мембран.

Липиды составляют 10-20% от массы тела человеческого организма. В среднем в телевзрослого человека их содержится 10-12 кг, из них 2-3 кг приходится на структурные липиды, входящие в состав биологических мембран (так называемый протоплазматический жир), а остальное - на резервные (запасные) липиды, около 98% которых сосредоточены в жировой ткани.

Данный класс соединений является составной частью пищевого рациона человека. Принято считать, что при сбалансированном питании соотношение белков, липидов, углеводов в пищевом рационе составляет 1:1:4. В среднем в организм взрослого человека с пищей ежесуточно должно поступать около 80 г жиров растительного и животного происхождения. В пожилом возрасте, а также при малойфизической нагрузке, потребность в жирахснижается, в условиях холодного климата и при тяжелой физической работе - увеличивается.

Основную массу липидов в организме составляют жиры - три-ацилглицеролы, служащие формой депонирования энергии. Они располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты. Значение их как пищевого продукта весьма многообразно. Прежде всего, жиры в питании имеют большое энергетическое значение. Высо­кая калорийность по сравнению с белками и углеводами придает им особую пищевую ценность при расходовании организмом больших ко­личеств энергии. Известно, что 1 г жиров при окислении в организме дает 38,9 кДж, тогда как 1 г белка или углеводов 17,2 кДж.

Следует помнить, что жиры являютсярастворителями витаминов А, Д, Е, К, Q и др., в связи с чем обеспеченность организма этими витаминами в значи­тельной степени зависит от поступления жиров в составе пищи. Кроме того, с ними вводятся некоторые полиненасыщенные кислоты (линолевая, линоленовая, арахидоновая идругие), которые относятся к катего­рии незаменимых жирныхкислот, т.к. ткани человека и животных поте­ряли способность синтезировать их. Эти кислоты условно объединены в группу под названием витамин F. Наконец, с жирами организм полу­чает комплекс биологически активных веществ, таких как фосфолипиды, стеролы и другие, играющие важную роль в обмене веществ.

Фосфолипиды - большая группа липидов, получившая своё на­звание из-за остатка фосфорной кислоты, придающего им свой­ства амфифильности. Благодаря этому свойству фосфолипиды фор­мируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому хи­мические процессы в клетке разделены и ориентированы в про­странстве, что необходимо для регуляций метаболизма.

Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол - важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (желчные кислоты) необходимы для пе­реваривания жиров. Стероидные гормоны, синтезируемые из хо­лестерола, участвуют в регуляции энергетического, водно-солево­го обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и дей­ствуют, как и гормоны, в очень низких концентрациях.

Резюмируя все вышесказанное, следует подчеркнуть, что липиды выполняют следующие основные функции:

· Структурная. Фосфолипиды вместе с белками образуют биологические мембраны (клеточные мембраны содержат 40% липидов и 60% белков). В состав мембран входят также стеролы. От свойств и структуры мемб­ранных липидов зависит активность мембраносвязанных ферментов, осо­бенности протекания процессов окислительного фосфорилирования.

· Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ. В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные, впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию.

· Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль — способствует плавучести.

· Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья, делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.

· Регуляторная. Многие гормоны являются производными холестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот. Полипреноловые коферменты - переносчики, обладающие регуляторной активностью, участ­вуют в создании межклеточных контактов.

· Источник образования метаболической воды. Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов, способных обходиться без воды в течение 10—12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

· Оказывают сущест­венное влияние на функционирование нервной системы. Комплексы липидов с углеводами – гликолипиды - будучи важнейшими компонентами нервных тканей, участвуют в пере­даче нервного импульса. В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

2. Классификация липидов

Липиды весьма разнородные по своему химическому строению вещест­ва, и даже биохимики считают нелегким делом классифицировать их и стандартизировать их названия. Чрезвычайное разнообразие соединений липидной природы затрудняет создание строгой их классификации, но наиболее общепризнанными являются три типа:

1) по химической структуре;

2) по физиологическому значению;

3) по физико-химическим свойствам.

1) По химической структуре липиды делят на два больших класса: простые и сложные липиды.

Простые липиды включают вещества, молекулы которых состоят из остатков жирных кислот и спиртов, соединенных сложноэфирной связью (жиры, воски, стериды).

Сложные липиды состоят из трех и более компонентов, помимо жирных кислот и спиртов, включают фосфорную кислоту (фосфолипиды), остатки сахаров (гликолипиды), азотистые соединения и пр.

В суммарной фракции липидов, выделенной из природного материала путем экстракции, присутствует еще так называемая неомыляемая фракция липидов. В ее сос­тав входят свободные высшие жирные кислоты (ВЖК), высшие спирты, поли­циклические спирты - стеролы и их производные - стероиды, а также терпены, к которым относятся эфирные масла, различные растительные пиг­менты.

2) По физиологическому значению липиды делят на резервные и структурные.

Резервные липиды депонируются в больших количествах и затем расходуются для энергетических нужд организма (жиры).

Все остальные липиды – структурные - участвуют в построении биологических мембран, защитных покровов, участвуют в деятельности нервной системы.

3) Разделение липидов по физико-химическим свойствам учитывает степень их полярности.

Различают нейтральные или неполярные липиды (жиры, воска, стериды) и полярные (фосфолипиды, гликолипиды).

Основными предшественниками и производными липидов являются: жирные кислоты, глицерол, стеролы и прочие спирты (помимо глицерола и стеролов), альдегиды жирных кислот, углеводороды, жирорастворимые витамины и гормоны.

На рис. 1 представлена обобщенная классификация липидов.

 
 


Рис.1. Классификация липидов (по А.Л.Ленинджеру)

3. Структура, состав и свойства жирных кислот

Жирные кислоты — структурные компонен­ты различных липидов. Свое название получили, прежде всего, потому, что входят в состав жиров.

В составе триацилглицеролов жирные кислоты выполняют функцию депонирования энергии, так как их радикалы содержат богатые энергией СН2-группы. При окислении С-Н-связей энергии выделяется боль­ше, чем при окислении углеводов, в кото­рых атомы углерода уже частично окислены

(-НСОН-).

В составе фосфолипидов и сфинголипидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщен­ных жирных кислот преобладает над насыщен­ными.

В фосфолипидах мембран ненасыщенных кислот может быть до 80-85%, а в составе жиров подкожного жира - до 60%. Ненасыщенные жирные кислоты, как правило, встречаются и у живот­ных и у растений в 2 раза чаще, чем насыщенные. В свободном, неэтерифицированном состоя­нии жирные кислоты в организме содержатся в небольшом количестве, например в крови, где они транспортируются в комплексе с белком альбумином.

По последним данным в составе природных липидов найдено и идентифицировано более двухсот различных жирных кислот, которые отли­чаются:

1) числом углеродных атомов в цепи;

2) степенью насыщенности;

3) расположением двойных связей;

4) присутствием окси-, кето- и других функциональных групп.

Жирные кислоты пред­ставляют собой углеводородную неразветвлённую цепь, на одном конце которой находится карбоксильная группа, а на другом -метиль­ная группа. В природных соединениях и в организме человека большинство из них содержат чётное число атомов углерода - от 16 до 20 (табл.1).

В гомологическом ряду жирных кислот каждый следующий член отличается от предыдущего на группу -СН2-. Углеводородные "хвосты" молекул жирных кислот в силу своей гидрофобности (гидро - вода, фобос - страх) опреде­ляют многие свойства липидов, в том числе и нерастворимость в воде.

Степень насыщенности – основной признак классификации жирных кислот, которые делят на насыщенные и ненасыщенные.

Жирные кислоты, не содержащие двой­ных связей, называют насыщенными. Основ­ной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30-35%). Общая формула насыщенных жирных кислот: СnН2n+1СООН, где n - число углеродных атомов может достигать 88, напри­мер, в миколевой кислоте С87Н175СООН.

Жирные кислоты, содержащие двойные связи, называют ненасыщенными. Ненасыщенные жирные кислоты представлены моноеновыми (с одной двойной связью) и полиеновыми (с двумя и большим числом двойных связей). Если в составе жирной кислоты содержатся две и более двойных связей, то они располагаются через -СН2-группу.

Имеется несколько спосо­бов изображения структуры жирных кислот. При обозначении жирной кислоты цифровым символом (табл.1, вторая графа) общее ко­личество атомов углерода представлено циф­рой до двоеточия, после двоеточия указывают число двойных связей. Позицию двойной свя­зи обозначают знаком Δ, после которого ука­зывают номер атома углерода, ближайшего к карбоксилу, у которого находится двойная связь. Например, С18.1Δ9 означает, что жир­ная кислота содержит 18 атомов углерода и одну двойную связь у 9-го атома углерода, считая от углеродного атома карбоксильной группы. По­зиция двойной связи может быть указана и дру­гим способом - по расположению первой двойной связи, считая от метального атома углерода жирной кислоты. Например, линолевая кислота может быть обозначена как С18: Δ9,12 или С18:2ω-6. По положению пер­вой двойной связи от метильного углерода полиеновые жирные кислотыделят на семейства (ω-3 и ω-6).

Таблица 1

Строение жирных кислот

Примечания: Cn:m — число атомов углерода (n) и число двойных связей (m) в молекуле жирной кислоты; ω (6, 3) — номер углеродного атома, у которого находится первая двойная связь, считая от метильного атома углерода; D — позиция двойной связи, считая с первого, карбоксильного атома углерода; * — жирные кислоты, которые не синтезируются в организме (незаменимые); ** — арахидоновая кислота может синтезироваться из линолевой кислоты.

Наиболее распространенными в организмах насыщенными жирными кислотами, на долю которых приходится 90% от общего числа, являются: пальмитиновая16) - С15Н31СООН и стеари­новая18) - С17Н35СООН. Они имеют углеродную цепь длиной 16 или 18 атомов. Другие природные насыщенные жирные кислоты:

лауриновая - С11Н23СООН,

миристиновая13Н27СООН,

арахиновая19Н39СООН,

лигноцериновая23Н47СООН

Большинство ненасыщенных жирных кислот, содержащихся в жирах и маслах, имеют только одну двойную связь в углеводородной цепи и поэто­му называются мононенасыщенными (моноеновыми) кислотами. Их общая формула: СnH2n - 1COOH.

Если считать углерод карбоксильной группы первым, то двойная связь находится между девятым и десятым атомами углерода. У ненасыщенных, как и насыщенных жирных кислот, преобладают углеводородные цепи с 16 и 18 углеродными атомами. Наиболее распространенными яв­ляются пальмитоолеиновая с С169, С15Н29СООН, СН3–(СН2)5–СН=С9Н–(СН2)71ООН и олеиновая с С18917CH3CООН, СН3-(СН2)7-СН=С9Н-(СН2)71ООН.

В структуре молекулы жира встречаются жирные кислоты с более чем одной двойной связью. Как правило, первая двойная связь находится между 9 и 10 углеродными атомами, а другие двойные связи в удаленной от карбоксильной группы части молекулы, т.е. на участке между C10 и метильным концом цепи. Своеобразие двойных связей при­родных ненасыщенных жирных кислот заключается в том, что они всегда отделены двумя простыми связями. Две двойные связи в жирных кислотах не бывают сопряженными (-СН=СН-СН=СН-), а всегда между ними нахо­дится метиленовая группа (-СН=СН-СН2-СН=СН-).

Двойные связи прак­тически во всех природных жирных кислотах находятся в цис-конформации. Это означает, что ацильные фрагменты находятся по одну сторону двойной связи. Цис-конфигурация двойной связи делает алифатическую цепь жирной кислоты изогнутой, что нарушает упо­рядоченное расположение насыщенных ради­калов жирных кислот в фосфолипидах мемб­ран (рис.2) и снижает температуру плавления.

Рис.2. Структура и форма молекулы триглицерида

Жирные кислоты с транс-конфигурацией двойной связи могут поступать в организм с пищей, например в составе маргарина. В этих кислотах отсутствует излом, характерный для цис-связи, поэтому жиры, содержащие такие не­насыщенные кислоты, имеют более высокую температуру плавления, т.е. более твёрдые по консистенции.

К природным ненасыщенным жирным кислотам (полиеновым) относятся:

линолевая кислота, содержащая 2 двойные связи С17Н31СООН, Δ9,12; линоленовая - 3 двойные связи С17Н29СООН, Δ9,12,15 ;

арахидоновая - 4 двойные связи С19Н31СООН, Δ5,8,11,14 .

Жирные кислоты с несколькими двойными связями (например, арахидоновая) имеют несколько изгибов цепи, и их молекулы обладают большей жесткостью, чем молекулы насыщенных жирных кислот; последние благодаря свободному вращению вокруг одинарных связей характеризуют­ся большей гибкостью и большей длиной:

Арахидоновая кислота

Арахидоновая кислота играет роль предшественника простагландинов и тромбоксанов. Простогландины служат регуляторами действия гормонов; они получили свое название потому, что впервые были обнаружены в секрете предстательной железы. Сначала предполагалось, что простагландины регулируют активность мужских репродуктивных тканей, однако в дальнейшем выяснилось, что они образуются и функционируют практически во всех органах. Эти вещества оказы­вают разнообразное физиологическое действие, и некоторые из них используются как терапевтические средства.

В последнее время разработаны новые высокоэффективные методы разделе­ния (тонкослойная и газовая хроматография) и установления структуры (ин­фракрасная спектрофотометрия) высших жирных кислот. В результате в составе натуральных жиров обнаружен ряд новых представителей высших жирных кис­лот — циклических, с нечетным числом атомов углерода и разветвленным уг­леродным скелетом. Последние, в частности, резко понижают температуру плавления жиров, обладают антибиотическими свойствами и видовой специ­фичностью. Одним из представителей их является, например, миколевая кисло­та, выделенная из туберкулезных бактерий:

Чаще и в наибольшей пропорции в природных жирах встречается олеиновая кислота (в большинстве жиров ее более 30%), а также пальмитиновая кислота (от 15 до 50%). В связи с этим олеиновую и пальмитиновую кислоты относят к категории главных жирных кислот, содержащихся в жирах. Остальные жирные кислоты при­сутствуют в природных жирах, как правило, в небольшом количестве (несколько процентов), лишь в некоторых видах природных жиров их содержание измеряется десятками процентов. Так, масляная и капроновая кислоты хорошо представлены в некоторых жирах животного происхождения, а каприловая и каприновая кислоты - в кокосовом масле. Лауриновой кислоты много в лавровом масле, миристиновой - в масле мускатного ореха, арахиновой, бегеновой и лигноцериновой — в арахисо­вом и соевом маслах. Полиеновые высшие жирные кислоты — линолевая и линоленовая — составляют главную часть льняного, конопляного, подсолнечного, хлоп­кового и некоторых других растительных масел. Стеариновая кислота содержится в значительном количестве (25% и более) в некоторых твердых животных жирах (жир баранов и быков) и маслах тропических растений (кокосовое масло).

Большинство жирных кислот синтезируется в организме человека, однако полиеновые кислоты (линолевая и α-линоленовая) не синте­зируются и должны поступать с пищей. Эти жирные кислоты называют незаменимыми, или эссенциальными. Основные источники полиеновых жирных кислот для человека - жид­кие растительные масла и рыбий жир, в кото­ром содержится много кислот семейства ω-3 (табл.1).

4. Простые липиды

Простые липиды - сложные эфиры спиртов и высших жирных кислот (ВЖК) - двухкомпонентные соединения. В зависимости от спирта простые липиды подразде­ляются на жиры (триацилглицеролы), воска, стериды.

4.1. Жиры

Жиры исключительно широко распространены в природе: они входят в со­став организма человека, животных, растений, микробов и даже некоторых ви­русов. Содержание их в некоторых биологических объектах, тканях и органах достигает 90%.

Термин "жиры" употребляют в двух смыслах. Те вещества, которые называют жирами в обыденной жизни (говяжий жир, сливочное масло и т.п.), не представ­ляют химически определенных соединений, так как сложены из многих состав­ляющих: смесей различных триглицеридов, свободных высших жирных кислот, пигментов, ароматических соединений, а часто и клеточных структур. В этом смысле, следовательно, жир представляет понятие морфологическое или технологическое. В частности, растительные жиры принято называть маслами, морфологически обособленные жиры животных — салом. Из разных источников выделено свыше 600 различных видов жиров.

С точки зрения состава под жирами подразумевают строго определенные со­единения, а именно: сложные эфиры высших жирных кислот и трехатомного спирта - глицерина. В связи с этим химики предпочитают употреблять название триглицериды.

Они являются представителями группы глицеридов (ацилглицеринов, или ацилглицеролов), представляющих собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицированы все три гидроксильные группы глицерина (ацильные радикалы R1, R2и R3 могут быть одинаковы или различны), то такое соединение называют триглицеридом (триацилглицерол), если две – диглицеридом (диацилглицерол) и, наконец, если этерифицирована одна группа – моноглицеридом (моноацилглицерол):

Глицерин (глицерол) Моноглицерид (моноацилглицерол)

Диглицерид (диацилглицерол) Триглицерид (триацилглицерол)

Жирные кислоты в триглицеридах могут быть насыщенными и ненасыщенными. Из жирных кислот чаще встречаются пальмитиновая, стеариновая и олеиновые кислоты.

Если все три кислотных радикала принадлежат одной и той же жирной кислоте, то такие триглицериды называют простыми (например, трипальмитин, тристеарин, триолеин и т.д.), если разным жирным кислотам, то смешанными.

Названия смешанных триглицеридов образуются в зависимости от входящих в их состав жирных кислот, при этом цифры 1, 2 и 3 указывают на связь остатка жирной кислоты с соответствующей спиртовой группой в молекуле глицерина (например, 1-олео-2-пальмитостеарин).

Некоторые из масел содержат преимущественно один вид жирных кислот, например, оливковое масло является триглицеридом олеиновой кислоты (триолеилглицерол).

В природных жирах, представляющих собой смеси разнообразных триглицеридов, доля простых триглицеридов незначительна, тогда как процентное содер­жание смешанных триглицеридов может быть очень высоким. Триацилглицеролы, как прави­ло, содержат 2 или 3 различные жирные кислоты. Большая часть триглицеридов тканей человека и других млекопитающих содержит в своем со­ставе смешанный жир.

Физические свойства триглицеридов зависят от характера высших жирных кислот, входящих в состав их молекул. Особенно наглядной становится эта за­висимость при рассмотрении температур плавления триглицеридов: если в со­ставе триглицерида преобладают насыщенные (твердые) жирные кислоты, то и триглицерид твердый; если преобладают ненасыщенные кислоты, температура плавления триглицерида низкая и при обычных условиях он жидкий. Таким образом, температура плавления триацилглицеролов повышается с увеличением числа и длины остатковнасыщенных жирных кислот.

Эту зависимость можно обнаружить у натуральных жиров (см. табл.2): при наличии преимущественно насыщенных триглицеридов в составе жира температура плавления последнего высокая, ненасыщенных — низкая. Бараний жир, напри­мер, имеет температуру плавления примерно на 10°С выше, чем свиной, потому что в нем содержится на несколько процентов меньше пальмитодиолеина (46 и 53% соответственно) и больше олеодипальмитина (13 и 5% соответственно).

Таблица 2

Состав жирных кислот и температура плавления некоторых пищевых жиров

Жиры Температу- ра Насыщен-ные   Ненасыщенные жирные
  плавления, °С кислоты,%   кислоты,%
          18:1 18:2 18:3 20:4 20:5
Молочный* + (28-33)   52-70   27-40 3-5 <1 ел. -
Свиной + (36-46) 37-15 37-50 8-10   ел. -
Говяжий + (44-51) 53-60 42-43 3-5 <1 - -
Бараний + (46-55) 55-65 36-43     - -
Рыбий - (2-7) 16-20 20-22       6-8
Масла              
Подсолнеч- ное - (16-19) 10-12 21-34 51-68   - -
Оливковое - (0-6) 10-19 64-85 4-14 <1 - -
Кукурузное - (10-20) 10-14 38-40 43-47 <3 - -

Примечания: ел. - кислоты, присутствующие в незначительных (следовых) количествах. В рыбьем жире, кроме указан­ных кислот, присутствуют 22:5 жирная кислота (клупанодоновая) -до 10% и 22:6 (цервоновая) — до 10%, которые необходимы для формирования структур фосфолипидов нервной системы человека. В других типах природных жиров они практически отсутствуют; * - жирные кислоты с числом атомов углерода от 4 до 10 содержатся в основном в липидах молока.

Низкая температура плавления многих растительных масел находится в полном соответствии с весьма значительным содержанием непредельных кислот в соста­ве их триглицеридов. Например, триглицериды жидкого при обычных условиях подсолнечного масла (Тпл -20°С) включают 34% олеиновой и 51% линолевой кислоты, тогда как твердое растительное масло бобов какао (Тпл +30 - 34°С) име­ет в своем составе 35% пальмитиновой и 40% стеариновой кислот.

Животные и растительные жиры отличаются некоторыми особенностями. Жи­вотные жиры более разнообразны по набору высших жирных кислот, входящих в их состав. В частности, среди последних чаще встречаются высшие жирные кис­лоты с числом углеродных атомов от 20 до 24.

Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновая, стеариновая и др.), благодаря чему они при комнатной температуре твердые.

В составе растительных жиров очень высока доля ненасыщенных высших жирных кислот (до 90%), и из пре­дельных лишь пальмитиновая кислота содержится в них в количестве 10 — 15%. Жиры, в состав которых входит много ненасыщенных жирных кислот, являются при обычной темпе­ратуре жидкими и называются маслами. Так в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой, линоленовой кислот и только 5% - на долю стеариновой и пальмитиновой кислот. Среди растительных жиров твердыми являются кокосовое масло и масло бобов какао, входящие в состав шоколада.

Жидкие растительные масла превращают в твердые жиры путем гидрогенизации, которая заключается в присоединении водорода по месту двойных связей непредельных жирных кислот. Гидрогенизированные растительные масла широко используются для изготовления маргарина. Заметим, что в жире человека, плавящемся при температуре 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

Триглицериды способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, в результате которой из триглицеридов образуются глицерол и жирные кислоты. Омыление жира может происходить как при ферментативном гидролизе, так и при действии кислот или щелочей.

Нейтральные жиры находятся в организме либо в форме протоплазматического жира, являющегося структурным компонентом клеток, либо в форме запасного резервного жира. Протоплазматический жир имеет пос­тоянный химический и количественный состав и содержится в тканях в определенном количестве, не изменяющемся даже при патологическом ожирении, в то время как количество резервного жира подвергается боль­шим колебаниям. Жиры неполярны и вследствие этого практически нерастворимы в во­де. Их плотность ниже, чем у воды, поэтому в воде они всплывают.

Основная функция жиров - служить энергетическим депо.

Кроме того, жиры откладываются вокруг жизненно важных органов толстым слоем и предохраняют их от механических повреждений (почки, кишечник, сердце и т.д.). В организме животных, впадающих в спячку, накапливается перед спячкой избыточный жир. У позвоночных жир отлагается под кожей в так называемой подкожной клетчатке, где он служит для теплоизоляции. Особенно выражен подкожный жировой слой у водных млекопитающих, живущих в холодном климате, например у китов (достигающий до 70-80 см), у ко­торых он играет еще и другую роль - способствует плавучести.

В расте­ниях накапливаются в основном масла, а не жиры. Семена, плоды, хлороплас­ты часто весьма богаты маслами, а некоторые семена, например, клещевины, сои, подсолнечника, служат сырьем для получения масла промышленным способом. Жиры содержатся в семенах 88% семейств высших растений, причем у многих из них они служат в качестве запасного вещества вместо крахмала.

Одним из продуктов окисления жиров является вода. Эта метаболическая вода очень важна для некоторых обитателей пустыни. Жир, запасаемый в их организме, используется именно для этой цели. Жир, которым запол­нен горб верблюда, служит в первую очередь не источником энергии, а источником воды.

4.2. Воски

Воcки - это сложные эфиры высших жирных кислот и высших одноатомных или двухатомных спиртов. Общие формулы их можно представить следующим образом:

В этих формулах R, R' и R" – возможные радикалы. Таким образом, общая формула воска:

где nи m - не менее 8.

Воски более устойчивы к дей­ствию света, окислителей, нагре­ванию и другим физическим воз­действиям, а также хуже гидролизуются, чем жиры. Известны случаи, когда пчелиный воск со­хранялся тысячелетиями. Именно поэтому воски выполняют в организме главным образом защитные функции.

Воски обнаружены у животных, они могут входить в состав жира, покрывающего кожу, шерсть, перья. Они встречаются также в покровах листьев некоторых вечно­зеленых растений. Листья многих растений покрыты защитным слоем воска. Блеск листьев многих тропических растений обусловлен отражением света от воскового покрытия. И вообще у растений 80% всех липидов, образующих пленку на поверхности листьев и стволов, составляют воски. Известно также, что они являются нормальными метаболитами некоторых микроорганизмов.

Природные воски (например, пчелиный воск, спермацет, ланолин) обычно, кроме сложных эфиров, содержат некоторое количество свободных жирных кислот, спиртов и углеводородов с числом углеродных атомов 21–35. Воски, об­разующие налет на цветочных лепестках, кожуре фруктов, листьях, состоят из сложных эфиров высших жирных кислот с длиной цепи от 24 до 35 атомов углерода (Например, карнаубовая C23H47СООН, цитроновая C25H51СООН, монтановая C27H55СООН) и длинноцепочечных первичных и вторичных спиртов.

Природные воски животного происхождения:

1) пчелиный воск (вырабатывается специальными железами рабочих пчел) состоит из смеси сложного эфира пальмитиновой кислоты С15Н31COOH и мирицилового спирта C31Н63ОН и сложного эфира пальмитиновой кислоты и цетилового спирта С16Н33ОН;

2) спермацет - воск тоже животного происхождения, добываемый из спермацетового масла черепных полостей кашалота, состоит на 90% из пальмитиноцетилового эфира: СН3-(СН2)14-СО-О-(СН2)15-СН3;

3) ланолин (смазочное вещество, покрывающее овечью шерсть) - это смесь сложных полицикли­ческих спиртов со специфическими разветвленными высшими жирными кислотами. В нем найдены миристиновая, арахидоновая и церотиновая кислоты, а также спе­цифические высшие жирные кислоты с разветвленной углеродной цепью — ланопальмитиновая, ланостеариновая и др.

У позвоночных секретируемые кожными железами воски выполняют функцию защитного покрытия, смазывающего и смягчающего кожу и пре­дохраняющего ее от воды. Восковым секретом покрыты также волосы, шерсть мех. У птиц, особенно водоплавающих, выделяемые копчиковой же­лезой воска придают перьевому покрову водоотталкивающие свойства. Воски вырабатываются и используются в очень больших количест­вах морскими организмами, особенно планктонными, у которых они слу­жат основной формой накопления высококалорийного клеточного топлива. Поскольку киты, сельди, лососевые и многие другие виды морских животных питаются, главным образом, планктоном, содержащиеся в нем воски играют важную роль в морских пищевых цепях в качестве основного ис­точника липидов.

4.3.Стериды

Стериды - сложные эфиры полициклических спиртов - стеролов (устаревшее название – стеринов) и высших жирных кислот.

Стериды образуют омыляемую фракцию липидов. В природе гораздо более широко, чем стериды, представлена фракция неомыляемых, свободных стеролов и родственных им соединений. Так, в организме че­ловека лишь 10% стеролов этерифицировано и находится в виде стеридов, а 90% свободно и образует неомыляемую фракцию. Соотношение стеролов и стеридов в разных тканях и жидкостях организма различно: печень содержит их поровну, а в желчи содержатся только свободные стеролы.

В основе молекулы стеролов лежит цикличе­ская группировка атомов, состоящая из восстановленного фенантрена (полно­стью восстановленный фенатрен называют пергидрофенантреном) и циклопентана.

Эта циклическая группировка называется циклопентанопергидро- фенантреном или стераном:

Стеран, несущий боковую цепь углеродных атомов и две СН3-группы (при 10-м и 13-м углеродных атомах цикла), называют холестаном:

Углеродные атомы в этих углеводородах обозначают исходя из нумерации, принятой для фенантрена (1 — 14-й атомы углерода); затем нумеруют четвертый цикл и только после этого переходят к нумерации атомов углерода в боковых це­пях. Циклы принято обозначать прописными буквами латинского алфавита.

Будучи окислен в положении 3 (кольцо А), холестан превращается в полицик­лический спирт — холестанол, дающий начало классу стеролов:

Однако не следует думать, что в природе стеролы возникают при восстанов­лении фенантрена. Выяснено, что их биосинтез идет путем циклизаций полиизопреноидов, которые по существу и являются предшественника­ми стеролов.

Характерное ядро холестанола повторяется во всех стеролах с незначитель­ными вариациями. Они сводятся либо к возникновению между 5 — 6-м и 7 — 8-м атомами углерода кольца В, или 22 — 23-м атомами углерода боковой це­пи двойных связей, либо к появлению в положении 24 (в боковой цепи) ради­кала, который может иметь строение — СН3; = СН2; — С2Н5; = СН — СН3 и т.п. Ниже приведены формулы наиболее важных природных стеролов:

Холестерол27Н45ОН) является основным стеролом животных и человека, то есть отно­сится к разряду зоостеролов. Эргостерол характерен для грибов. Ситостерол и стигмастерол типичны для растений (фитостеролы): первый содержится, например, в соевом масле, а второй — в масле зародышей семян пшеницы. Фукостерол обнаружен у бурых водорослей. Наличие того или иного стерола ча­сто специфично для определенного класса или семейства животных или рас­тений. Из стеролов у человека представлен только холестерол:

Важнейшей биохимической функцией у высших позво­ночных является его превращение в гормон прогестерон в плаценте, семенниках, желтом теле и надпочечниках, в результате чего откры­вается цепь биосинтеза стероидных половых гормонов и кортикостероидов. Андрогены (мужские половые гормоны) синтезируются не только в семенниках, но и (правда, в меньших количествах) в коре надпочечников и в яичниках. Аналогично эстрогены (женские половые гормоны) образуются не только в яичниках, но и в семенниках. В принципе половые признаки определяются соотношением секретируемых андрогенов и эстрогенов. Таким образом, все стероидные гормоны в конечном итоге образуются из общего предшественника – холестерола, который в свою очередь синтезируется из ацетил-КоА.

Андрогены стимулируют рост и созревание, поддерживают функционирование репродуктивной системы и формирование вторичных половых признаков мужского организма; эстрогены регулируют женскую репродуктивную систему. Вместе с тем и андрогены и эстрогены оказывают разнообразное действие на большинство тканей, не связанных с репродукцией. Например, андрогены стимулируют рост скелетных мышц. Андрогены и некоторые их производные называют также анаболическими стероидами. Их принимают многие штангисты, футболисты, борцы с целью увеличения мышечной массы и силы. Но надо иметь в виду, что бесконтрольное применение этих гормонов может привести к плачевным итогам.

Другое направление метаболизма холестерина - образование желчных (холевых) кислот. Холевые кислоты - важнейшие ингредиенты желчи, обеспечивающие нор­мальное всасывание жирных кислот в кишечнике человека и животных.

Третье важное направление метаболизма холестерина синтез витамина Д3 из продукта окисления холестерола - 7-дегидрохолестерина в результате воздействия ультрафиолетовых лучей на кожу.

В организме человека холестерин содержится в значительномколи­честве. Так, на человека весом 65 кг приходится в норме около 250 г холестерина. Концентрация холестерина в крови обычно не ниже 120-150 мг % на 100 мл крови. Пути использования холестерола в организме показаны на рис. 3.

Стеролы — кристаллические вещества, хорошо растворимые в хлороформе, серном эфире и горячем спирте, практически не растворимые в воде; устойчи­вы к действию гидролизующих агентов.

Рис.3. Фонд холестерола в организме, пути его использования и выведения (по Т.Т.Березову)

В организме животных стеролы окис­ляются и дают начало целой группе производных, носящих общее название стероиды. Сюда относятся многие соединения, из которых наиболее характерны следующие представители:

Сложные эфиры зоо- и фитостеролов с высшими жирными кислотами образу­ют группу омыляемых веществ — стеридов:

Из высших жирных кислот в составе стеридов обнаружены в основном паль­митиновая, стеариновая и олеиновая кислоты.

Все стериды, так же как и стеролы, — твердые, бесцветные вещества. В приро­де, особенно в составе животных организмов, они встречаются в виде комплек­сов с белками, функциональное значение которых сводится к транспорту стеролов, стероидов и стеридов, а также к участию в образовании биологических мембран. При увеличении содержания стеролов и стеридов в составе липидной час­ти мембран уменьшается проницаемость последних, возрастает их вязкость, ог­раничивается их подвижность, ингибируется активность ряда ферментов, встро­енных в мембрану. Стериды и стеролы регулируют и другие процессы в организ­ме. Некоторые из производных стеролов являются канцерогенными веществами, тогда как другие (например, тестостеронпропионат) используют для лечения не­которых видов рака. Стериды и стеролы в больших количествах входят в состав нервной ткани человека и животных, значение и функции которых активно ис­следуют.

5. Сложные липиды

Наряду с простыми неполярными липидами (жирами, восками, стеридами) су­ществуют полярные сложные липиды. Они составляют главные компоненты клеточ­ных мембран, т.е. тех контейнеров, в которых протекают основные ме­таболические процессы. Эти сложные липиды по наличию третьего компонента делятся на фосфолипиды и гликолипиды (см. рис.1).

5.1. Фосфолипиды

Фосфолипидыпредставляют собой сложные эфиры многоатомных спиртов глицерина или сфингозина с высшими жирными кислотами и фосфорной кислотой. В состав фосфолипидов входят также азотсодержащие соединения: холин, этаноламин или серин.

В качестве высших жирных кислот в молекулах фосфолипидов содержатся пальмитиновая, стеариновая, линолевая, линоленовая и арахидоновая кислоты, а также лигноцериновая, нервоновая и др. В зависимости от типа фосфолипида в построении его молекулы принимают участие один или два остатка высшей жирной кислоты. Фосфорная же кислота входит, как правило, в состав фосфолипидов в количестве одной молекулы. Лишь некоторые виды инозитфосфолипидов содержат два и более остатка фо­сфорной кислоты.

Азотсодержащие составляющие фосфолипидов разнообразны. Наиболее час­то встречаются этаноламин, холин и серин. Из химического строения фосфолипидов ясно, что в их молекулах есть участки, способные диаметрально противоположно взаимодействовать с молекулами растворителя.

Углеводородный радикал остатка (или остатков) высших жирных кислот фор­мирует лиофобную часть, а остатки фосфорной кислоты и азотистого основания, способные ионизироваться, — лиофильную. Благодаря этой особенности фосфо­липиды, видимо, участвуют в обеспечении односторонней проницаемости мемб­ран субклеточных структур.

Фосфолипиды — твердые вещества жироподобного вида; они бесцветны, но быстро темнеют на воздухе вследствие окисления по двойным связям, входящих в их состав непредельных кислот. Они хорошо растворяются в бензоле, петролейном эфире, хлороформе и т.п. Растворимость в спирте, ацетоне и серном эфи­ре у разных групп фосфолипидов различна. В воде они нерастворимы, но могут образовывать стойкие эмульсии, а в некоторых случаях — коллоидные растворы.

Фосфолипиды найдены в животных и растительных организмах, но особенно много содержит их нервная ткань человека и позвоночных животных. У беспо­звоночных содержание фосфолипидов в нервной системе в 2 — 3 раза ниже. Много фосфолипидов в семенах растений, сердце и печени животных, яйцах птиц и т.п. Специфическими фосфолипидами обладают микроорганизмы.

Фосфолипиды легко образуют комплексы с белками и в виде фосфолипопротеинов присутствуют во всех клетках живых существ, участвуя главным образом в формировании клеточной оболочки и внутриклеточных мембран.





Дата публикования: 2014-09-25; Прочитано: 14992 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.036 с)...