Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Б — колесо с косыми зу­бьями; в — колесо с круговыми зубьями



Рис. 47. Геометрические параметры конических зубчатых колес

Рис. 48. Гипоиднаяя передача

Передачу с коническими колесами для передачи вращающего момента между валами со скрещиваю­щимися осями называют гипоидной (рис. 48). Эта передача находит применение в автомобилях.

По стоимости конические передачи дороже ци­линдрических при равных силовых параметрах. Их применение диктуется только необходимостью пе­редавать момент при пересекающихся осях валов. Передаточное число одной пары .

Вершины начальных и делительных конусов конической передачи на­ходятся в точке пересечения осей валов О (рис. 50). Высота и толщина зубьев уменьшаются по направлению к вершинам конусов. Геометрические параметры конической передачи (рис. 47 и 50):

АОВ — делительный конус шестерни;

ВОС — делительный конус колеса;

АО1В — делительный дополнительный конус шестерни;

ВО2С — делительный дополнительный конус колеса;

— угол делительного конуса шестерни;

— угол делительного конуса колеса;

de[ — внешний делительный диаметр шестерни;

de2 то же, колеса;

d1 — средний делительный диаметр шестерни;

d2 — то же, колеса;

b — ширина зубчатого венца (длина зуба);

Re внешнее делительное конусное расстояние (или длина дис­танции).

Рис. 50. Коническая прямозубая передача

Пере дат очное число конической передачи определяется так:

В конической передаче может быть бесчисленное множество делительных окружностей. Для расчета в машиностроении принимают внешнюю и среднюю делительные окружности (см. рис. 47).

Из условия, что в конической передаче модуль и делительный связаны теми же соотношениями, что и в цилиндрических передачах, т.е. d=mz (рис.51), определяют внешний de и средний dm делительные метры:

где те — внешний окружной модуль; тт средний окружной модуль.

Рис. 51. Зуб конического колеса

Внешний окружной модуль обычно выбирают из стандартного ряда(см. табл. 3). Округление внешнего модуля до стандартного значения не является обязательным требованием. Этот модуль называют производственным и по его значению определяют все геометрические параметры зубча­тыхколес (задают размеры зубьев на внешнем торце, на котором удобнопроизводить измерения).

Средний окружной модуль т рассчитывают в зависимости от внешнегоокружного модуля те. По среднему окружному модулю производят расчет передачи на прочность при изгибе.

Рис. 52

Зависимость между те и тт в конической передаче.

Из рис. 3.51 ,где (из ). Отсюда .

Умножив левую и правую части равенства на два, получим . Разделив левую и правую части равенства на , получим

или

Геометрические соотношения размеров прямозубой конической пере­дачи с эвольвентным профилем зуба. Согласно рис. 53 внешний диаметр вершин зубьев

внешний диаметр впадин зубьев

Длина зуба (ширина венца) [ при условии и ,где средний делительный диаметр шес­терни].

Рис. 53. Геометрия прямозубой конической передачи

Ориентировочно длина зуба может быть выбрана также в зависимости от внешнего делительного конусного расстояния Re:

.

Таблица 17. Геометрические параметры прямозубой конической передачи

Параметр, обозначение Расчетные формулы
Внешний окружной модуль
Средний окружной модуль
Внешний диаметр вершин зубьев
Внешний делительный диаметр
Внешний диаметр впадин зубьев
Высота зуба
Высота головки зуба
Высота ножки зуба
Окружной шаг
Окружная толщина зуба
Окружная ширина впадины
Радиальный зазор
Ширина зубчатого венца
Внешнее делительное конусное расстояние
Угол делительного конуса шестерни
колеса

Силы в зацеплении прямозубой конической передачи. В рассматривае­мой передаче действует одна сила, обусловленная давлением зуба шестерни на зуб колеса. Эта сила для удобства расчетов раскладывается на 3 состав­ляющие: окружная Ft, радиальная Fr и осевая Fa.

С учетом геометрических соотношений в конической передаче по нор­мали к зубу действует сила Fn1 (рис. 54). Эту силу разложим на две состав­ляющие: и . В свою очередь разложим на и . Запишем:

; ; .

Осевая сила на шестерне численно равна радиальной силе на колесе.

Рис. 54. Силы в зацеплении прямозубой конической передачи

Рис.55

Рис. 56





Дата публикования: 2014-10-19; Прочитано: 1607 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...