Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Медь и сплавы на ее основе



Медь – это металл красноватого цвета плотностью 8,94 г/см3, имеющий гранецентрированную кристаллическую решетку с периодом а =0,31607 нм.

Медь в чистом виде характеризуется высокой электро- и теплопроводностью, хорошей обрабатываемостью давлением, небольшой прочностью и применяется для изготовления токопроводящих деталей. На основе меди получают различные сплавы, которые широко используются в качестве материалов для изготовления различных деталей. Эти сплавы обладают хорошими механическими и антикоррозионными свойствами, они износостойки, имеют низкий коэффициент трения, высокую электро- и теплопроводность. Различают две основные группы медных сплавов: латунь и бронза. В латунях основным легирующим элементом является цинк, в бронзах – иные элементы.

Легирующие элементы в марках медных сплавов обозначают следующими буквами: А – алюминий, Н – никель, О – олово, Ц – цинк, С – свинец, Ж – железо, Мц – марганец, К – кремний, Ф – фосфор, Т – титан.

Латунь – сплав меди с цинком. Содержание цинка в сплаве достигает 40...45%. Латуни пластичны и обладают хорошими литейными свойствами. Их предел текучести равен МПа. Прочность можно несколько повысить за счет использования обработки давлением при высокой температуре.

Латуни делят на двойные (простые) и многокомпонентные сплавы, в которых основным легирующим элементом является цинк. В двойных содержание цинка может доходить до 50%. Марки таких латуней обозначают буквой Л и цифрой, показывающей содержание меди в процентах, например Л59. Для улучшения механических, технологических и коррозийных свойств в латуни вводят кроме цинка в небольших количествах различные легирующие элементы (алюминий, кремний, марганец, олово, железо, свинец). Такие латуни называют специальными или многокомпонентными. Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди. Никель увеличивает растворимость цинка в меди. Легирующие элементы увеличивают прочность, но уменьшают пластичность латуни. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают алюминий, цинк, кремний, марганец и никель. Латуни в наклепанном состоянии или с высокими остаточными напряжениями и содержащие свыше 20% Zn склонны к коррозийному («сезонному») растрескиванию в присутствии влаги, кислорода, аммиака. Для предотвращения растрескивания полуфабрикаты из латуни указанных составов отжигают при 250 - 650ºС, а изделия из латуни – при 250 - 270ºС.

Все латуни по технологическому признаку подразделяют на две группы: деформированные и литейные. Деформируемые латуни обладают высокими коррозийными свойствами в атмосферных условиях, пресной и морской воде и применяются для деталей в судостроении. Более высокой устойчивостью в морской воде обладают латуни, легированные оловом, получившие название морских латуней.

Литейные латуни, предназначенные для фасонного литья, обладают хорошей текучестью, мало склонны к ликвации (неоднородность химического состава, возникающая при его кристаллизации) и обладают антифрикционными свойствами. От Литейных латуней требуется повышенная прочность, поэтому к ним добавляется большое количество специальных присадок, улучшающих их литейные свойства. Эти латуни отличаются лучшей коррозийной стойкостью. Когда требуется высокая пластичность, повышенная теплопроводность и важно отсутствие склонности к коррозийному растрескиванию, применяют латуни с высоким содержанием меди. Латуни с большим содержанием цинка обладают более высокой прочностью, лучше обрабатываются резанием, но хуже сопротивляются коррозии.

В марках многокомпонентных латуней первые цифры указывают среднее содержание меди, а последующие – легирующих элементов. Например, латунь ЛКС80-3-3 содержит 80% меди, по 3% кремния и свинца, а остальное – цинк.

Для химического состава б ронзы характерно наличие основного легирующего компонента в качестве которого применяют: олово, алюминий, железо, кремний, хром, бериллий и другие.

Бронзы классифицируют по основным легирующим элементам: оловянистые и, безоловянистые (или специальные). К безоловянистым относят алюминиевые, бериллиевые, кремнистые, свинцовистые и т.д. Широко используются оловянистые бронзы, они характеризуются высокой стойкостью против истирания, низким коэффициентом трения скольжения, наилучшими антифрикционными свойствами. Оловянистые бронзы по технологическому признаку разделяют на литейные и деформируемые. Безоловянистые бронзы хорошо обрабатываются, в ряде случаев обладают более высокими механическими и антикоррозийными свойствами, чем оловянистые, поэтому они нашли широкое применение в промышленности. В зависимости от назначения и механических свойств специальные бронзы делятся на деформируемые и литейные. К деформируемым специальным бронзам относят бронзы с содержанием основного легирующего элемента 5-10%. Эти бронзы хорошо обрабатываются в горячем и в ряде случаев в холодном состоянии, обладают высокой коррозийной стойкостью.

Сплав меди с оловом обычно содержит до 10...12%Sn. Если увеличить содержание олова, то сплав приобретает повышенную хрупкость. Обычно этот тип бронз дополнительно легируют Zn, Fe, P, Pb, Ni и другими элементами. При этом цинк Zn улучшает технологические свойства и снижает стоимость. Фосфор P улучшает литейные свойства бронзы, никель Ni положительно влияет на механические характеристики и улучшает коррозионную стойкость, железо повышает сопротивление коррозии.

Бронзы, легированные алюминием, представляют собой сплав с содержанием Al до 9%. Кроме этого, они часто содержат легирующие добавки, например, Fe, Ni, Mn и др. Такие бронзы хорошо сопротивляются коррозии, и их можно использовать для производства деталей, работающих в морской воде и других агрессивных средах. Кроме того, они имеют высокие механические и технологические свойства.

При легировании меди кремнием (до 3,5% Si) существенно повышаются прочность и пластичность. Кроме основного легирующего компонента, здесь используют и другие легирующие добавки, такие как Si, Mn и другие. Благодаря хорошим технологическим и механическим свойствам подобные бронзы применяют для изготовления пружин, работающих в агрессивных средах. Они более прочны и дешевы, чем оловянистые бронзы. Кремнистая бронза обладает высокой устойчивостью против коррозии в ряде агрессивных сред, в особенности в щелочах.

В результате легирования меди бериллием, предельная растворимость которого составляет 2,7%, получаются бронзы, имеющие высокую прочность и пластичность. Достигаются такие механические характеристики в результате закалки и последующего старения. Эти бронзы имеют высокий предел выносливости и успешно работают в агрессивных средах. Они хорошо свариваются и обрабатываются резанием. Их можно с успехом использовать для выполнения пружин, мембран, различных подвижных контактов и деталей, работающих на износ. Бериллиевая бронза марки БрБ2 немагнитна, стойка к морозу, действию пресной и соленой воды, хорошо сваривается и обрабатывается резанием.

Бронзы, легированные свинцом (до 30% Pb), представляют собой сплавы, которые после затвердевания состоят из кристаллов меди и включений свинца. Это происходит потому, что свинец не растворяется. Тем не менее такой вид бронзы обладает хорошими антифрикционными свойствами и используется как материал для антифрикционных покрытий. Поскольку эти бронзы имеют низкую прочность, то их целесообразно применять в качестве покрытий, нанесенных на металлическую поверхность, чаще всего в подшипниках скольжения.

Марки бронз и медно-никелевых сплавов начинаются соответственно с букв Бр и М, а следующие буквы и цифры указывают на наличие легирующих элементов и соответственно их содержание в процентах. Например, бронза БрОЦС 5-5-5 содержит олова, цинка и свинца по 5% или медно-никелевый сплав мельхиор МН19 содержит 19% никеля.

Все медные сплавы отличаются хорошей стойкостью против атмосферной коррозии. Прочность медных сплавов, особенно латуней, ниже, чем сталей, а коррозионная стойкость много больше. Все латуни и большинство бронз, за исключением алюминиевых, хорошо паяются.

Бронзы и латуни используются как материалы для изготовления трущихся сопряжений (для гаек рабочих винтов, вкладышей подшипников, зубчатых венцов червячных колес и т.п.), так как обладают хорошими антифрикционными свойствами. Чем больше разница в твердости трущихся поверхностей, тем лучше; чем ближе их твердости, тем больше опасность заедания при малейшем недостатке смазки. Мелкие детали сложного очертания при опасности ржавления, например части насосов, арматура и т. п., изготовляют из латуни.

Правильный выбор материала может быть сделан на основе расчетов, а также сопоставления механических характеристик материалов нескольких вариантов деталей-аналогов. В дальнейшем при изучении конкретных де­талей будет отмечаться, из каких материалов возможно их изготовление, а также будут даны рекомендации по выбору.

Латуни: ЛЦ14К3С3, ЛЦ40АЖ применяются для изготовления подшипников, втулок.

ЛЦ23А6Ж3Мц2- гаек винтов, червячных винтов.

ЛЦ40С – втулок, сепараторов для подшипников качения.

ЛЦ40Сд, ЛЦ36Мц202С2 – зубчатых колес.

Латунь Л63, отличающаяся высокой пластичностью, используется для изготовления токопроводящих и конструктивных деталей типа наконечники, втулки, шайбы, а латунь ЛК80-3Л – для изготовления литых деталей.

Бронзы: Бр.ОФ6,5-0,15, Бр.010ф1, Бр.010Ц2, Бр.05С25, Бр.01С22, Бр.С60Н2,5 Бр.С30 – применяются для деталей подшипников, втулок, Бр.0Ф7-0,2 – прутков, шестерен, зубчатых колес, втулок.

Деформируемые оловянистые бронзы используются для получения лент, полос, прутков, проволоки, пружин, трубок, подшипниковых деталей и т.д., к ним относят бронзы марок БрОФ4-0,25, БрОФ6,5-0,4, БрОЦ4-3, БрОЦС4-4-2,5 и др.

Свинцовистая бронза БрС-30 обладает высокими антифрикционными свойствами и применяется для сильно нагруженных подшипников с большими удельными давлениями (например, коренные подшипники турбин).

Особое место при изготовлении упругих элементов из-за высокой прочности и упругости занимает бериллиевая бронза марки БрБ2. Применяют ее для изготовления ответственных деталей типа токоведущих пружинящих контактов, пружин, мембран.

Безоловянистые бронзы БрАЖ9-4, БРАМц9-2 используются при изготовлении небольших зубчатых и червячных колес, втулок подшипников скольжения, ходовых гаек в винтовых механизмах.

Литейные специальные бронзы используют для фасонного литья в авиа- и машиностроении при получении шестерен, втулок, седел клапанов, пружин, ободов подшипников для различных массивных деталей, работающих в агрессивных средах и при больших давлениях, а также для антифрикционных деталей.

Медно-никелевые сплавы: МНЖМц30-1-1, МН19 – применяется в химической и пищевой промышленности.

МН95-5 – для изделий машиностроения

МНЖ5-1, МН10 – для конденсаторных труб.

Титановые сплавы (с алюминием, медью и другими присадками) после термообработки обладают высокой прочностью (σВ = 900... 1300 МПа), коррозионной стойкостью, имеют невысокую плотность (ρ = 4500 кг/м3). Они используются для изготовления изделий в авиационно-космической технике, судостроении и др.

Титановые сплавы: ВТ22, ВТ9, ВТ14 - применяются для изготовления длительно работающих деталей.

ВТ16 - применяются для изготовления крепежных и резьбовых деталей диаметром 40 мм и более.





Дата публикования: 2014-10-19; Прочитано: 1939 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...