Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Архитектура нейронной сети



Основой работы самообучающихся нейропрограмм является нейронная сеть, представляющая собой совокупность нейронов -простых элементов, связанных между собой определенным образом. Нейроны и межнейронные связи задаются программно на обычном компьютере или могут иметь "материальную" основу - особую микросхему (нейрочип), которые применяются в специально созданных нейрокомпьютерах. Структура взаимосвязей между нейронами в нейрокомпьютере или нейропрограмме аналогична таковой в биологических объектах. Искусственный нейрон имеет коммуникации с другими нейронами через синапсы, передающие сигналы от других нейронов к данному (дендриты) или от данного нейрона к другим (аксон). Кроме того, нейрон может быть связан сам с собой. Несколько нейронов, связанных между собой определенным образом, образуют нейронную сеть.

Нейросеть, также как и биологический аналог, должна иметь каналы для связи с внешним миром. Одни каналы обеспечивают поступление информации из внешнего мира на нейросеть, другие выводят информацию из нейросети во внешний мир. Поэтому одни нейроны сети рассматривается как входные, другие же - как выходные. Часть нейронов может не сообщаться с внешним миром, а взаимодействовать с входными, выходными и такими же нейронами ("скрытые" нейроны).

Очевидно, что существует огромное количество способов соединения нейронов, растущее с увеличением числа нейронов в сети. Наиболее употребительной является слоистая архитектура, в которой нейроны располагаются “слоями”. В наиболее общем случае аксоны каждого нейрона одного слоя направлены к нейронам следующего слоя. Таким образом, нейроны первого слоя являются входными (принимающими информацию из внешнего мира), нейроны последнего слоя - выходными (выдающими информацию во внешний мир). Схема трехслойной сети изображена на рис. 8.1.

Рис. 8.1. Трехслойная сеть с 6 нейронами

Другой вид архитектуры - полносвязная, когда каждый нейрон соединен с каждым, в том числе сам с собой. Пример простейшей нейросети из 3 нейронов показан на рис. 8.2. Для удобства изображения из каждого нейрона выходит не один, а несколько аксонов, направленных на другие нейроны или во внешний мир, что аналогично присоединенным к одному аксону через синапсы нескольким дендритам.

Слоистые сети являются частными случаями полносвязных.Для построения экспертных систем мы выбрали именно полносвязные нейросети, исходя из следующих соображений. Во-первых, при одинаковом числе нейронов полносвязные сети имеют большее количество межнейронных связей, что увеличивает информационную емкость сети. Во-вторых, полносвязная архитектура является намного более универсальной, что не требует экспериментов с вариациями схемы соединений для каждой задачи. В-третьих, в случае эмуляции сети на обычной ЭВМ полносвязные сети обладают серьезными преимуществами, прежде всего в скорости функционирования и простоте программной реализации без ущерба качеству обучаемости.





Дата публикования: 2014-10-29; Прочитано: 914 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...