Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Все задачи, решаемые человеком, с позиций нейроинформационных технологий можно условно классифицировать на 2 группы:
· Задачи, имеющие известный и определенный набор условий, на основании которого необходимо получить четкий, точный, недвусмысленный ответ по известному и определенному алгоритму.
· Задачи, в которых не представляется возможным учесть все реально имеющиеся условия, от которых зависит ответ, а можно лишь выделить приблизительный набор наиболее важных условий. Так как часть условий при этом не учитывается, ответ носит неточный, приблизительный характер, а алгоритм нахождения ответа не может быть выписан точно.
Для решения задач первой группы с большим успехом можно использовать традиционные компьютерные программы. Как бы ни был сложен алгоритм, ограниченность набора условий (входных параметров) дает возможность составления алгоритма решения и написания конкретной программы, решающей данную задачу. Нет никакого смысла в использовании нейроинформационных технологий для решения таких задач, так как в этом случае нейросетевые методы будут априорно хуже решать такие задачи. Единственным исключением является случай, когда алгоритм вычисления ответа слишком большой и громоздкий и время на решение конкретной задачи по этому алгоритму не удовлетворяет практическим требованиям; кроме того, при получении ответа не требуется абсолютная точность.
При решении задач второй группы применение нейротехнологии оправдывает себя по всем параметрам, при выполнении, однако, двух условий: во-первых, наличия универсального типа архитектуры и единого универсального алгоритма обучения (отсутствие необходимости в их разработке для каждого типа задач), во-вторых, наличия примеров (предыстории, фиксированного опыта), на основании которых производится обучение нейронных сетей. При выполнении этих условий скорость создания экспертных систем возрастает в десятки раз, и соответственно снижается их стоимость.
Практически вся медицинская и биологическая наука состоит именно из задач, относящихся ко второй группе, и в большинстве этих задач достаточно легко набрать необходимое количество примеров для выполнения второго условия. Это задачи диагностики, дифференциальной диагностика, прогнозирования, выбора стратегии и тактики лечения и др. Медицинские задачи практически всегда имеют несколько способов решения и “нечеткий” характер ответа, совпадающий со способом выдачи результата нейронными сетями.
Все неалгоритмируемые или трудноалгоритмируемые задачи, решаемые нейронными сетями, можно классифицировать на два принципиально различающихся типа в зависимости от характера ответа - задачи классификации и задачи предикции.
Задачи классификации. Это основная и очень обширная группа медико-биологических задач. Ответом в них является класс - выбор одного варианта из заранее известного набора вариантов. Классификация может быть бинарной (элементарная классификация) - в этом случае набор возможных ответов состоит из двух вариантов (классов), и n-арной, где число классов более двух. Примерами бинарной классификации могут служить как объективные категории (пол человека - мужской или женский; характер опухоли - доброкачественный или злокачественный), так и субъективные категории (здоров человек или болен; наличие или отсутствие склонности к простудным заболеваниям). В некоторых случаях не представляется возможным отнесение ответа задачи к объективной или субъективной категории, и это не имеет принципиального значения для обучения и работы нейросетевой экспертной системы.
Важной чертой задачи классификации по определению является возможность выбора одного и только одного варианта решения (класса). Поэтому постановка диагноза не может считаться одной классификационной задачей, т.к. у одного человека может одновременно присутствовать несколько патологий. В случае невозможности выбирать один вариант ответа (множественности выбора) задача подразделяется на подзадачи, каждая из которых представляет собой классификационную задачу.
Другой вид задач для нейросетей - задачи предикции, или предсказания. Они подразделяются на предсказание числа (одномерная предикция) и вектора (векторная предикция, более общий случай). Отличие от классификационных задач заключается в том, что ответ в задачах предикции может быть дробным и принимать любые значения на каком-либо интервале.
Векторная предикция предполагает, что ответ может быть представлен в виде нескольких независимых друг от друга чисел, образующих точку (или вектор) в многомерном пространстве, размерность которого равно количеству предсказываемых чисел. Число координат вектора называется при этом размерностью вектора ответа.
При решении реальных задач возможны различные комбинации предикции и классификации, и постановка задачи должна быть сделана самим предметным специалистом.
Дата публикования: 2014-10-29; Прочитано: 1410 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!