Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Биосинтез глюкозы - глюконеогенез



Глюконеогенез - это синтез глюкозы из неуглеводных предшественников. У млекопитающих эту функцию выполняет в основном печень, в меньшей мере - почки и клетки слизистой кишечника. Запасов гликогена в организме достаточно для удовлетворения потребностей в глюкозе в период между приемами пищи. При углеводном или полном голодании, а также в условиях длительной физической работы концентрация глюкозы в крови поддерживается за счет глюконеогенеза. В этот процесс могут быть вовлечены вещества, которые способны превратиться в пируват или любой другой метаболит глюконеогенеза.

Включение субстратов в глюконеогенез

Причем, использование первичных субстратов в глюконеогенезе происходит в различных физиологических состояниях. Так, в условиях голодания часть тканевых белков распадается до аминокислот, которые затем используются в глюконеогенезе. При распаде жиров образуется глицерин, который через диоксиацетонфосфат включается в глюконеогенез. Лактат, образующийся при интенсивной физической работе в мышцах, затем в печени превращается в глюкозу. Следовательно, физиологическая роль глюконеогенеза из лактата и из аминокислот и глицерина различна. Синтез глюкозы из пирувата протекает, как и при гликолизе, но в обратном направлении. Семь реакций гликолиза легко обратимы и используются в глюконеогенезе. Но три киназные реакции необратимы и должны шунтироваться. Так, фруктозо-1,6-дифосфат и глюкозо-6-фосфат дефосфорилируются специфическими фосфатазами, а пируват фосфорилируется до образования фосфоенолпирувата посредством двух промежуточных стадий через оксалоацетат.

Глюконеогенез. Ферменты: 1- пируваткарбоксилаза, 2- фосфоенолпируваткарбоксикиназа, 3- фосфатаза фру-1,6-дифосфата, 4- глюкозо-6-фосфатаза.
Глюконеогенез, необратимые реакции  

Образование оксалоацетата катализируется пируваткарбоксилазой. Этот фермент содержит в качестве кофермента биотин. Оксалоацетат образуется в митохондриях, транспортируется в цитозоль и включается в глюконеогенез. Следует обратить внимание на то, что каждая из необратимых реакций гликолиза вместе с соответствующей ей необратимой реакцией глюконеогенеза составляют цикл, называемый субстратным.Таких циклов существует три - соответственно трем необратимым реакциям. Результатом одновременного протекания реакций субстратных циклов будет расходование энергии. Субстратные циклы могут протекать в условиях нормального обмена веществ в печени и имеют вполне определенное биологическое значение. Кроме того, эти циклы служат точками приложения регуляторных механизмов, в результате чего изменяется поток метаболитов либо по пути распада глюкозы, либо по пути ее синтеза. За сутки в организме человека может синтезироваться до 80 г глюкозы. На синтез 1 моль глюкозы из пирувата расходуется 6 макроэргических связей (4 ATP и 2 GTP).

Глюкозо-лактатный цикл (цикл Кори) По мере расходования запасов гликогена глюкоза может ресинтезироваться из молочной кислоты (лактата), аминокислот и других соединений. Глюкозо-лактатный цикл Начинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, которые бедны митохондриями по сравнению с красными). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу:

Цикл Кори

Образование глюкозы из лактата осуществляется в печени (цикл Кори). При этом из лактата образуется пируват, далее Г-6-Ф, который превращается затем в гликоген или глюкозу в зависимости от состояния обмена веществ в организме (схема). Превращение лактата в глюкозу может происходить и в волокнах белых мышц, но при этом необходима высокая концентрация лактата и высокое соотношение концентраций АТФ и АДФ. Глюконеогенез в незначительной степени происходит и в почках при более низкой концентрации лактата. Образование глюкозы из лактата – энергоемкий процесс, требующий достаточного количества АТФ. В печени соотношение АТФ и АДФ составляет около 10, в других тканях оно ниже. В цикле Кори из лактата образуется пируват, далее – Г-6-Ф, который превращается в глюкозу, поступающую в кровоток и в мышцах преобразующуюся в гликоген.

Схема 8. Механизм глюконеогенеза (цикл Кори). 1 – пируваткарбоксилаза; 2 – фосфоенолпируваткарбоксилаза; 3 – фруктозо-1,6-дифосфатаза; 4 – глюкозо- 6-фосфатаза.

Обмен фруктозы также осуществляется гликолитическим путем. Часть фруктозы превращается в глюкозу, другая часть под влиянием кетогексокиназы превращается во фруктозо-1-фосфат и далее в дигидроксиацетонфосфат, дальнейшие изменения которого происходят в гликолитическом цикле.

Важную роль в процессах глюконеогенеза играет так называемый цикл аланина, который происходит в мышечной ткани. При голодании вследствие катаболизма белков высвобождаются аминокислоты, более 50% количества которых составляет аланин. Поступая в печень, он используется там не для синтеза белка, а для образования Г-6-Ф через стадию пирувата. Некоторое количество аланина также через стадию пирувата превращается в Г-6-Ф непосредственно в мышечной ткани. В мышцах аланин образуется из пировиноградной кислоты. Основными донаторами группы NH(2) при этом являются такие аминокислоты, как лейцин, изолейцин, валин.

Таким образом, количество глюкозы в крови, оттекающей от печени, зависит в основном от двух взаимосвязанных процессов: гликолиза и глюконеогенеза, которые в свою очередь регулируются ключевыми ферментами фосфофруктокиназой и фруктозо-1, 6-бисфосфатазой соответственно. Активность этих ферментов адаптирована к пищевому и гормональному состоянию организма.





Дата публикования: 2015-02-22; Прочитано: 1466 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...