Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Теорема единственности решений уравнений Максвелла



Ранее мы установили, что усредненные векторы электромагнитного поля в тех точках пространства, где имеют смысл первые производные, удовлетворяют уравнениям

,

,

,

,

,

,

.

На границах раздела сред первые производные теряют смысл. Вместо уравнений Максвелла на поверхностях раздела были установлены граничные условия.

Часто интересуются электромагнитным полем в ограниченном объеме . Возникает вопрос, какие условия надо задать на границе объема и начальные условия в объеме , чтобы выписанные уравнения Максвелла плюс эти условия определили единственное поле в объеме .

На этот вопрос отвечает теорема единственности решений уравнений Максвелла:

Если для заданного момента известны напряженность электрического и магнитного поля в любой точке объема , ограниченного замкнутой поверхностью , а также касательная компонента электрического или магнитного поля в каждой точке поверхности и в любой момент времени , начиная с , то уравнения Максвелла плюс перечисленные условия определяют единственное электромагнитное поле , . Параметры среды , , предполагаются не зависящими от интенсивности поля, т.е. не зависящими от времени.

Доказательство. Предположим, что существует два различных решения: , (одно решение) и , . (второе решение), каждое из которых удовлетворяет сформулированным выше начальным и граничным условиям и уравнениям Максвелла. Обозначим , . В силу линейности системы уравнений Максвелла разностное поле , удовлетворяет этой системе, т.е.

Умножим скалярно первое уравнение на , а второе ‑ на и вычтем из второго уравнения первое

. (4.46)

Левая часть этого равенства, в силу формулы векторного анализа (1.28), равна . Далее имеем:

.
Аналогично . Далее .

С учетом этого равенство (4.46) можно записать так

.

Проинтегрируем это выражение по объему и воспользуемся математической теоремой Гаусса-Остроградского:

.
Поскольку на поверхности

(или ),
то на этой поверхности (или ), поэтому и последний интеграл обращается в нуль. Итак:

.

Правая часть этого равенства , т.е. неотрицательная. Следовательно, не возрастает. Кроме того, из общего вида ясно, что этот интеграл . Кроме того, в момент времени и , т.е. этот интеграл равен нулю. Функция , обладающая этими тремя свойствами, очевидно, , .

, ,
т.е. , и – решение единственно.

Вопросы и задачи к лекции 25

276-1. По весьма длинному однородному прямолинейному проводнику кругового сечения протекает постоянный ток. Найти тепловые потери за единицу времени на участке единичной длины, если известна – напряженность на поверхности провода, – удельная проводимость.

277-2. Сформулируйте теорему Умова-Пойнтинга для электромагнитного поля в среде в дифференциальной форме.

278-3. Сформулируйте теорему Умова-Пойнтинга для электромагнитного поля в среде в интегральной форме. Поясните смысл каждого члена в этой теореме.

279-4. По двухпроводной линии течет постоянный ток (рис. 4.35). Приемник электроэнергии находится за сечением рисунка. Найдите направление вектора Пойтинга в точке М, расположенной посредине между проводами.

Рис. 4.35. Двухпроводная линия постоянного тока

280-5. Сформулируйте и докажите теорему единственности решений уравнений Максвелла для электромагнитного поля в среде.





Дата публикования: 2015-03-29; Прочитано: 1359 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...