Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Фармакокинетических процессов



Величина и продолжительность фармакологического эффекта во многом определяется концентрацией лекарственного вещества (ЛВ) в тех органах или тканях, где оно оказывает свое действие. Поэтому очень важно поддерживать определенную (терапевтическую) концентрацию ЛВ в месте его действия. Однако в большинстве случаев концентрацию вещества в тканях определить практически невозможно, поэтому при фармакокинетических исследованиях определяют концентрации ЛВ в плазме крови, которые для большинства веществ коррелируют с их концентрациями в органах-мишенях.

В результате всасывания, распределения, депонирования и элиминации (биотрансформации и выведения) ЛВ его концентрация в плазме крови изменяется. Эти изменения могут быть отражены графически. Для этого концентрацию лекарственного вещества измеряют в плазме крови сразу и через определенные промежутки времени после его введения и на основании полученных данных строят кривую изменения концентрации ЛВ во времени, или так называемую фармакокинетическую кривую (рис. 1.6).

Рис. 1.6. Изменение концентрации лекарственного вещества во времени при внутривенном и внесосудистом введении.

Для того чтобы количественно оценить влияние процессов всасывания, рас­пределения депонирования и элиминации на концентрацию ЛВ в крови, используют математические фармакокинетические модели. Различают однокамерные, двухкамерные и многокамерные фармакокинетические модели.

В однокамерной модели организм условно представляют в виде камеры, заполненной жидкостью. Вещество может поступать в камеру постепенно, как при введении внутрь (или других внесосудистых путях введения), или мгновенно, как при быстром внутривенном введении (рис. 1.7.).

Рис. 1.7. Однокамерная фармакокинетическая модель.

Vd (volume of distribution) – объем распределения вещества в камере; D – количество вещества, введенное в камеру; Со – начальная концентрация вещества в камере.

После поступления вещества в камеру в количестве D оно распределяется мгно­венно и равномерно и занимает объем камеры, при этом концентрация вещества, которая создается в камере, обозначается как начальная концентрация — Со. Объем распределения вещества в камере — Vd (volume of distribution) = D/Co.

В клинической практике используют параметр, который получил название ка­жущийся объем распределения (apparent volume of distribution, Vd).

К а ж у щ и й с я о б ъ е м р а с п р е д е л е н и я — гипотетический объем жид­кости организма, в котором лекарственное вещество распределено равномерно и при этом находится в концентрации, равной концентрации данного вещества в плазме крови (Ср). Соответственно, кажущийся объем распределения Vd = Q/Cp где Q - количество вещества в организме при концентрации в плазме крови Ср.

Если допустить, что вещество после внутривенного введения в дозе D мгно­венно и равномерно распределилось в организме, то кажущийся объем распреде­ления Vd = D/Co,

где Со — начальная концентрация вещества в плазме крови.

Кажущийся объем распределения позволяет судить о том, в каком соотношении распределяется вещество между жидкостями организма (плазмой крови, интерстициальной, внутриклеточной жидкостями). Так, если величина Vd какого-либо вещества имеет значение, приблизительно равное 3 л (средний объем плазмы крови), это значит, что данное вещество преимущественно находится в плазме крови. Такой объем распределения характерен для круп-номолекулярных соединений, которые практически не проникают в клетки крови и через эндотелий выходят за пределы сосудистого русла), например, для гепарина (Vd – около 4 л).

Если Vd равен 15 л (сумма средних объемов плазмы крови и интерстициальной жидкости), вещество преимущественно находится в плазме крови и интерстициальной жидкости (во внеклеточной жидкости), т.е. не проникает внутрь клеток. Предположительно это гидрофильное соединение, которое не проходит через клеточные мембраны. К таким веществам относятся аминогликозидные антибиотики (гентамицин, тобрамицин). Поэтому эти антибиотики практически не оказывают действие на микроорганизмы, находящиеся внутри клеток, т.е. неэффективны в отношении внутриклеточных инфекций.

Некоторые лекарственные вещества имеют объем распределения порядка 40 л (средний объем всех жидкостей организма). Это означает, что они находятся как во внеклеточной, так и во внутриклеточной жидкостях организма, т.е. проникают через мембраны клеток. В основном так распределяются в организме липофильные неполярные соединения.

Если величина Vd лекарственного вещества значительно превышает объем жидкостей организма, это вещество скорее всего депонировалось в периферических тканях, и его концентрация в плазме крови чрезвычайно мала. Большие значения объемараспределения характерны для трициклических антидепрессантов амипрамина и амитриптилина (Vd — порядка 1600 л). Такие ЛВ не могут быть эффективно удалены из организма с помощью гемодиализа.

После мгновенного и равномерного распределения вещества в объеме камеры и достижения концентрации Со, концентрация вещества в камере постепенно снижается при участии двух процессов - биотрансформации и экскреции (см. рис. 1.7.). Оба эти процесса объединяются термином элиминация.

Для большинства лекарственных веществ скорость элиминации зависит от концентрации вещества (чем меньше концентрация вещества, тем меньше скорость элиминации). При этом кривая изменения концентрации вещества во времени имеет экспоненциальный характер (рис. 1.8). Такая элиминация соответствует кинетике 1-го порядка (в единицу времени элиминируется определенная часть вещества).

Основными параметрами, характеризующими процесс элиминации, являются константа скорости элиминации (kel, ke) и период полуэлиминации (t1/2).

Рис. 1.8. Элиминация вещества, соответствующая кинетике первого порядка.

kel (ke) – константа скорости элиминации 1-го порядка; t1/2 – период полуэлиминации.

К о н с т а н т а скорости э л и м и н а ц и и 1-го п о р я д к а показывает, какая часть вещества элиминируется из организма в единицу времени (размер­ность мин -1, ч-1). Например, если kel какого-либо вещества, которое ввели внут­ривенно в дозе 100 мг, составляет 0,1 ч-1, то через 1 ч количество вещества в кро­ви будет равно 90 мг, а через 2 ч — 81 мг и т.д.

Немногие лекарственные вещества (этанол, фенитоин) элиминируются в со­ответствии с кинетикой нулевого порядка. Скорость такой элиминации не зависит от концентрации вещества и является постоянной величиной, т.е. в еди­ницу времени элиминируется определенное количество вещества (например, за 1 ч элиминируется 10 г чистого этанола). Связано это с тем, что при терапевти­ческих концентрациях названных веществ в крови происходит насыщение фер­ментов, метаболизирующих эти вещества. Поэтому при увеличении концентра­ции таких веществ в крови скорость их элиминации не повышается.

П е р и о д п о л у э л и м и н а ц и и (t1/2, half-life) — время, за которое концент­рация вещества в плазме крови снижается на 50% (рис. 1.9). Для большинства ЛВ (для тех, элиминация которых подчиняется кинетике 1-го порядка) пери­од полуэлиминации — величина постоянная в определенных пределах и не за­висит от дозы ЛВ. Поэтому, если за один период полуэлиминации из плазмы крови удаляется 50% внутривенно введенного ЛВ, то за 2 периода - 75%, а за 3,3 периода — 90% (этот параметр используют для подбора интервалов между вве­дениями вещества, необходимых для поддержания его постоянной концентра­ции в крови).

Рис. 1.9. Определение периода полуэлиминации.

t1/2 - период полуэлиминации.

Период полуэлиминации связан с константой скорости элиминации следую­щим соотношением:

t1/2 = In 2/kel = 0,693/kel.

Если сразу же после внутривенного введения вещества производить измере­ния его концентрации в плазме крови через короткие интервалы времени, то мож­но получить двухфазный характер изменения концентрации вещества в крови (см. рис. 1.11).

Такой же характер кривой можно получить с помощью двухкамерной фарма-кокинетической модели (рис. 1.10).

Рис. 1.10. Двухкамерная фармакокинетическая модель.

ЛВ – лекарственное вещество.

В этой модели организм представляют в виде двух сообщающихся между собой камер.. Одна из камер этой модели называется центральной и представляет плазму крови и хорошо перфузируемые органы (сер­дце, печень, почки, легкие), а другая, называемая периферической, представляет плохо перфузируемые ткани (кожу, жировую, мышечную ткани). Вещество вводят в центральную камеру, где оно мгновенно и равномерно распределяется и откуда затем проникает в периферическую камеру. Этот период обозначается как фаза распределения, или α-фаза. Затем вещество перераспределяется из периферической камеры в центральную и удаляется из нее вследствие элиминации. Эта фаза (фаза элиминации) обозначается как β-фаза. α-Фаза характеризуется параметром, который называется периодом полураспределения — t1/2α, а характеристикой β-фазы является собственно период полуэлиминации, обозначаемый как t 1/2β: (рис.1.11). Период полураспределения, как правило, меньше периода полуэлиминации, так как вещество распределяется из центральной камеры в периферическую быстрее, чем элиминируется.

Рис. 1.11. Характер элиминации вещества в двухкамерной модели.

К л и р е н с — фармакокинетический параметр, который характеризует скоростьосвобождения организма от лекарственного вещества.

Поскольку освобождение организма от ЛВ происходит за счет процессовбиотрансформации (метаболизма) и экскреции, различают метаболический и экскреторный клиренс. Метаболический клиренс (Clmet) и экскреторный клиренс (Сехсг) в сумме составляют системный (общий) клиренс (Clt, total cleance): Clmet + Cexcr = Clt.

Системный клиренс численно равен объему распределения, который освобождается от вещества в единицу времени (размерность — объем в единицу времени, например, мл/мин, л/ч, иногда с учетом массы тела, например, мл/кг/мин): Clt = Vdkel.

Значения клиренса прямо пропорциональны скорости элиминации вещества и обратно пропорциональны его концентрации в биологической жидкости (в кро­ви, плазме крови, сыворотке):

Clt = Скорость элиминации вещества,
C

где С — концентрация вещества.

В зависимости от путей элиминации ЛВ различают почечный клиренс (С1ren), печеночный клиренс (Clhep), а также клиренс, осуществляемый другими органа­ми (легкими, слюнными, потовыми и молочными железами, внепеченочный ме­таболизм). Наиболее важными составляющими системного клиренса являются почечный и печеночный клиренс.

Почечный клиренс численно равен объему плазмы крови, который освобож­дается от ЛВ в единицу времени и зависит от интенсивности процессов клубочковой фильтрации, канальцевой секреции и реабсорбции. Почечный клиренс можно определить при постоянной концентрации вещества в плазме крови: С1ren = CuVu/Cp,

где Cu — концентрация вещества в моче, Cp — концентрация вещества в плазме крови и Vu - скорость мочеотделения.

Печеночный клиренс зависит от процессов биотрансформации ЛВ и экскре­ции неизмененного ЛВ с желчью. Значения почечного и печеночного клиренса следует учитывать при назначении ЛВ больным с недостаточностью почек или печени соответственно.





Дата публикования: 2015-03-26; Прочитано: 295 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...