Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Непрерывность функций



Функция f (x), определенная в некоторой окрестности точки a, называется непрерывной в этой точке, если

Пусть функция определена в некоторой окрестности точки a, быть может, за исключением самой точки a. Точка a называется точкой разрыва, если эта функция либо не определена в точке a, либо определена, но не является непрерывной в точке a.

Чаще всего разрыв возникает по двум причинам:

  1. функция задана различными выражениями на разных участках, и в граничных точках эти выражения имеют различные пределы;
  2. функция не определена в данной точке.
График 1.3.7.1. Эта функция непрерывна в точке A и разрывна в точке B
График 1.3.7.2. На рисунке показана функция Она разрывна в точке x 0 = 1, так как не существует в этой точке.

Примером разрывной функции может служить функция зависимости плотности воды в окрестности 0 ºC. Примером непрерывной функции является зависимость площади квадрата от длины его стороны. Подчеркнем еще раз, что непрерывность функции рассматривается только на области ее определения.

Если функция непрерывна в каждой точке некоторого промежутка, то она называется непрерывной на этом промежутке. Большинство функций, изучаемых в элементарной математике, непрерывны на всей области определения. Таковыми являются линейная функция y = kx + b, квадратичная y = ax 2 + bx + c, показательная и тригонометрическиефункции.

Если функции f (x) и g (x) непрерывны в точке x 0, то их сумма и произведение также непрерывны в этой точке, а функция непрерывна в ней при условии, что g (x 0) ≠ 0.

Отсюда следует, что рациональные функции непрерывны во всех тех точках, в которых их знаменатель не обращается в нуль.

Из непрерывности функции y = f (x) в точке x 0 и функции z = g (y) в точке y = f (x 0) следует непрерывность сложной функции g (f (x)) в точке x 0.

Функцию f (x) называют непрерывной на отрезке [ a; b ], если она непрерывна в каждой точке интервала (a; b) и, кроме того, непрерывна справа в точке a и слева в точке b.

Свойства непрерывных функций:

Сумма непрерывных функций есть функция непрерывная.

Сумма конечного числа непрерывных функций есть функция непрерывная.

. Произведение непрерывных функций есть функция непрерывная.

Произведение конечного числа непрерывных функций есть функция непрерывная.

Частное от деления непрерывных функций есть функция непрерывная – за исключением точек, в которых знаменатель обращается в нуль.

Любая элементарная функция непрерывна в области своего определения.

Пусть функция непрерывна на промежутке [ a, b ] и принимает на его концах значения разных знаков. Тогда на этом промежутке существует такая точка c, в которой .

Классификация точек разрыва:

Точки разрыва функции
 
Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a, а две имеют разрыв.
 
Непрерывна при x = a.   Имеет разрыв при x = a.
 
Непрерывна при x = a.   Имеет разрыв при x = a.
Рисунок 1.

Классификация точек разрыва функции

Все точки разрыва функции разделяются на точки разрыва первого и второго рода.

Говорят, что функция f (x) имеет точку разрыва первого рода при x = a, если в это точке

  • Существуют левосторонний предел и правосторонний предел ;
  • Эти односторонние пределы конечны.

При этом возможно следующие два случая:

  • Левосторонний предел и правосторонний предел равны друг другу:

Такая точка называется точкой устранимого разрыва.

  • Левосторонний предел и правосторонний предел не равны друг другу:

Такая точка называется точкой конечного разрыва. Модуль разности значений односторонних пределов называется скачком функции.

Функция f (x) имеет точку разрыва второго рода при x = a, если по крайней мере один из односторонних пределов иромипрмпрмр

Не существует или равен бесконечности. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧЕСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ.  

Производной у=f(x) х называется предел отношения приращения дельта у к приращению аргумента дельта х, когда последнее стремится к нулю.


Производная. Рассмотрим некоторую функцию y = f (x) в двух точках x 0 и x 0 + : f (x 0) и f (x 0 + ). Здесь через обозначено некотороемалое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции: f (x 0 + ) - f (x 0)называется приращением функции. Производной функции y = f (x) в точке x 0называется предел:


Если этот предел существует, то функция f (x) называется дифференцируемой в точке x 0 . Производная функции f (x) обозначается так:

Геометрический смысл производной. Рассмотрим график функции y = f (x):


Из рис.1 видно, что для любых двух точек A и B графика функции:


где - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точкуB, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

Уравнение касательной. Выведем уравнение касательной к графику функции в точке A (x 0, f (x 0)). В общем случае уравнение прямой с угловым коэффициентом f ’(x 0) имеет вид:

y = f ’(x 0) · x + b.

Чтобы найти b,воспользуемся тем, что касательная проходит через точку A:

f (x 0) = f ’(x 0) · x 0 + b,

отсюда, b = f (x 0) – f ’(x 0) · x 0, и подставляя это выражение вместо b, мы получим уравнение касательной:

y = f (x 0) + f ’(x 0) · (x – x 0).

Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси, причём закон движения задан: координата x движущейся точки – известная функция x (t) времени t. В течение интервала времени от t 0 до t 0 + точка перемещается на расстояние: x (t 0 + ) - x (t 0) = , а её средняя скорость равна: va = / . При 0 значение средней скорости стремится к определённой величине, которая называется мгновенной скоростью v (t 0) материальной точки в момент времени t 0. Но по определению производной мы имеем:

отсюда, v (t 0) = x’ (t 0), т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: a = v’ (t).





Дата публикования: 2015-03-26; Прочитано: 507 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...