Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Поле соленоида



Соленоидом называется цилиндрическая катушка с проволочной обмоткой, по которой можно пропускать электрический ток (Рис. 60). Такой прибор широко используется в различных приборах для создания магнитного поля и других целей.

Сейчас наша задача – рассчитать характеристики магнитного поля, создаваемого электрическим током, протекающим по обмотке. Будем считать, что все параметры катушки (соленоида) нам известны. Для этого, прежде всего, необходимо качественно обсудить структуру магнитного поля. Первое, самое очевидное, источник обладает осевой симметрией, поэтому создаваемое им поле также должно быть осесимметричным, поэтому достаточно рассмотреть структуру поля (например, его силовые линии).

Далее воспользуемся способом рассуждений Майкла Фарадея, который с каждым электрическим зарядом связывал определенное число силовых линий электрического поля исходящих из заряда (своеобразная трактовка теоремы Гаусса), а с каждым элементом тока определенное число замкнутых силовых линий магнитного поля (теорема о циркуляции индукции магнитного поля).

Соленоид является совокупностью параллельных практически плоских круговых витков, поле которого мы изучали. Посмотрим еще раз на силовые линии поля одного витка (На Рис. 61 показаны поля двух витков – каждое из которых часть рисунка 33). Силовые линии должны охватить проводник с током, поэтому они сгущаются внутри витка, а снаружи удаляются от него. Если сблизить два витка, то силовые линии начнут охватывать оба проводника (токи в них текут в одном направлении), что приведет к еще большему сгущению внутри витков и удалению от них снаружи. Добавление числа витков будет усиливать этот эффект. Поэтому следует ожидать, что для длинного соленоида с большим числом витков, силовые линии внутри соленоида будут почти прямыми линиями с небольшими искривлениями при приближении к границам катушки (Рис. 62), а снаружи от него будут замыкаться где-то очень далеко от катушки.

Проведем еще одну цепочку рассуждений, приводящих к такому же выводу о структуре магнитного поля соленоида.

Сначала рассмотрим электрическое поле равномерно заряженной плоскости, которое является однородным с каждой стороны от плоскости и зеркально симметричным. А затем мысленно свернем часть плоскости в цилиндрическую трубку (Рис. 63). Внутри векторы напряженности окажутся направленными противоположно друг другу, поэтому скомпенсируют друг друга – поле внутри равномерно заряженного цилиндра отсутствует, а снаружи будет радиальным (Рис. 63).

Теперь «сделаем» соленоид из участка плоскости, по которой равномерно протекает электрический ток. В этом случае силовые линии внутри цилиндра сгущаются, а снаружи имеют возможность «разбежаться» (Рис. 64).

Интересная конструкция получится, если расположить параллельно две плоских пластины, по которым токи текут в противоположных направлениях. В этом случае магнитное поле будет создаваться только между пластинами, так как снаружи поля пластин направлены противоположно и компенсируют друг друга. Не напоминает ли эта система плоский конденсатор? Похожая ситуация и в случае соленоида – снаружи вблизи соленоида магнитное поле отсутствует.

1. «Сверните» мысленно из части плоскости, по которой течет постоянный электрический ток, цилиндр так, чтобы ток тек вдоль цилиндра (параллельно его оси). Установите структуру магнитного поля, создаваемого этим током.

После того, как структура поля установлена, расчет величины индукции поля является «примитивной задачкой». Выберем контур (см. Рис. 62) для применения теоремы о циркуляции в виде прямоугольника ABCD, стороны которого AB и CD параллельны оси катушки. Подсчет циркуляции вектора индукции магнитного поля (то есть суммы Γ B =∑ iBi ⋅Δ li) в рассматриваемом случае прост: на стороне AB магнитное поле отсутствует; на сторонах BC и DA вектор индукции перпендикулярен контуру (поэтому соответствующие слагаемые также равны нулю); на стороне CD вектор индукции постоянен и параллелен этой стороне, поэтому здесь ∑ iBi ⋅Δ li = Bl (l - длина этой стороны контура). Таким образом, уравнение теоремы о циркуляции в данном случае имеет вид

Bl = μ 0 NI, (1)

где N - число витков обмотки, которые попали внутрь выбранного контура. Из этого уравнения находим индукцию магнитного поля внутри соленоида

B = μ 0 nI, (2)

где n = Nl - число витков обмотки на единицу длины соленоида, эта величина также называется плотностью намотки.

Из окончательной формулы (2) следует, что поле внутри длинного соленоида является однородным. При приближении к торцам соленоида начинают сказываться, так называемые, краевые эффекты: во-первых, поле перестает быть однородным, появляются радиальные составляющие вектора индукции (силовые линии изгибаются), во-вторых, величина индукции поля уменьшается.

Магнитное поле постоянных токов различной формы исследовалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты их опытов были обобщены французским ученым П. Лапласом.

Закон Био-Савара-Лапласа для проводника с током I, элемент d l которого создает в некоторой точке А (рис. 1) индукцию поля d B, равен

(1)

где d l - вектор, по модулю равный длине d l элемента проводника и совпадающий по направлению с током, r - радиус-вектор, который проведен из элемента d l проводника в точку А поля, r - модуль радиуса-вектора r. Направление d B перпендикулярно d l и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с направлением касательной к линии магнитной индукции. Это направление может быть найдено по правилу правого винта: направление вращения головки винта дает направление d B, если поступательное движение винта совпадает с направлением тока в элементе.

Модуль вектора d B задается выражением

(2)

где α — угол между векторами d l и r.

Аналогично электрическому, для магнитного поля выполняется принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

(3)

Используя данные формулы для расчет характеристик магнитного поля (В и Н) в общем случае достаточно сложен. Однако если распределение тока имеет какую-либо симметрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции дает возможность просто рассчитать некоторые поля. Рассмотрим два примера.

1. Магнитное поле прямого тока — тока, текущего по тонкому прямому бесконечному проводу (рис. 2).


В произвольной точке А, удаленной на расстояние R от оси проводника, векторы d B от всех элементов тока имеют одинаковое направление, которое перпендикулярно плоскости чертежа («к вам»). Значит, сложение всех векторов d B можно заменить сложением их модулей. За постоянную интегрирования возьмем угол α (угол между векторами d l и r) и выразим через него все остальные величины. Из рис. 2 следует, что

(радиус дуги CD вследствие малости d l равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти формулы в (2), получим, что магнитная индукция, которая создавается одним элементом проводника, равна

(4)

Поскольку угол α для всех элементов прямого тока изменяется в пределах от 0 до π, то, согласно (3) и (4),

Значит, магнитная индукция поля прямого тока

(5)

2. Магнитное поле в центре кругового проводника с током (рис. 166). Как видно из рисунка, каждый элемент кругового проводника с током создает в центре магнитное поле одинакового направления - вдоль нормали от витка. Значит, сложение векторов d B также можно заменить сложением их модулей. Поскольку расстояние всех элементов проводника до центра кругового тока одинаково и равно R и все элементы проводника перпендикулярны радиусу-вектору (sinα=1), то, используя (2),

Тогда

Следовательно, магнитная индукция поля в центре кругового проводника с током


Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и обобщил ее (см. ниже). Уравнение, представляющее собой содержание теоремы в этом обобщенном виде, входит в число уравнений Максвелла. (Для случая постоянных электрических полей - то есть в принципе в магнитостатике - верна теорема в первоначальном виде, сформулированном Ампером и приведенном в статье первым; для общего случая правая часть должна быть дополнена членом с производной напряженности электрического поля по времени - см. ниже). Теорема гласит[1]:

Циркуляция магнитного поля постоянных токов по всякому замкнутому контуру пропорциональна сумме сил токов, пронизывающих контур циркуляции.

Эта теорема, особенно в иностранной или переводной литературе, называется также теоремой Ампера или законом Ампера о циркуляции (англ. Ampère’s circuital law). Последнее название подразумевает рассмотрение закона Ампера в качестве более фундаментального утверждения, чем закон Био — Савара — Лапласа, который в свою очередь рассматривается уже в качестве следствия (что, в целом, соответствует современному варианту построения электродинамики).

Для общего случая (классической) электродинамики формула должна быть дополнена в правой части членом, содержащим производную по времени от электрического поля (см. уравнения Максвелла, а также параграф «Обобщение» ниже). В таком дополненном виде она представляет собой четвёртое уравнение Максвелла в интегральной форме.

Основным фундаментальным обобщением[8] теоремы является четвёртое уравнение Максвелла. В интегральной форме оно является прямым обобщением на динамический случай магнитостатической формулы, приведённой выше. Для вакуума[9]:

для среды[10]:

(Как видим, формулы отличаются от приведенных выше только одним добавочным членом со скоростью изменения электрического поля в правой части).

Дифференциальную форму этого уравнения:

(в гауссовой системе, для вакуума и среды соответственно) - также можно при желании считать вариантом обобщения теоремы о циркуляции магнитного поля, поскольку она, конечно, тесно связана с интегральной.





Дата публикования: 2015-01-26; Прочитано: 1204 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...