Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Интегрирование рациональных дробей общего вида



Функция называется рациональной функцией, или рациональной дробью, если она представляет собой отношение двух многочленов и : .Пусть степень многочлена равна , а степень равна , то есть

где и . Разделив числитель и знаменатель на число , мы получим, что коэффициент при старшей степени в знаменателе равен 1. Для дальнейшего нам будет удобно предполагать, что эта операция уже произведена, то есть что . Далее мы будем предполагать, что все коэффициенты и -- вещественные числа.

Если , то дробь называется правильной, а если , то неправильной. Если дробь неправильная, то её числитель можно поделить на знаменатель , получив при этом частное и остаток , степень которого меньше . Это означает, что

или что

где -- некоторый многочлен, называемый целой частью рациональной дроби . Если остаток тождественно равен 0, то многочлен делится на без остатка, и функция является многочленом, то есть совпадает со своей целой частью .

С интегрированием целой части дроби , то есть многочлена , не возникает никаких проблем, так что в дальнейшем мы можем заняться выяснением способов интегрирования лишь правильных рациональных дробей.

Для нахождения частного и остатка можно применять алгоритм деления многочленов "столбиком".9.

11. Определенный интеграл

Пусть определена на . Разобьём на части с несколькими произвольными точками . Тогда говорят, что произведено разбиение отрезка Далее выберем произвольную точку , ,

Определённым интегралом от функции на отрезке называется предел интегральных сумм при стремлении ранга разбиения к нулю , если он существует независимо от разбиения и выбора точек , то есть

Если существует указанный предел, то функция называется интегрируемой на по Риману.

Свойства: I. Величина определенного интеграла не зависит от обозначения переменной интегрирования, т.е. , где х, t – любые буквы.

II. Определенный интеграл с одинаковыми пределами интегрирования равен нулю.

III. При перестановке пределов интегрирования определенный интеграл меняет свой знак на обратный.

IV. Если промежуток интегрирования [a,b] разбит на конечное число частичных промежутков, то определенный интеграл, взятый по промежутке [a,b], равен сумме определенных интегралов, взятых по всем его частичным промежуткам.

V. Постоянный множитель можно выносить за знак определенного интеграла.

VI. Определенной интеграл от алгебраической суммы конечного числа непрерывных функций равен такой же алгебраической сумме определенных интегралов от этих функций.





Дата публикования: 2015-01-26; Прочитано: 310 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...