Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Импульсные звуковые методы



Метод «ударной волны». Он основан на изменении скорости рас­пространения единичных импульсов, возбуждаемых ударом легкого молот­ка или специальными приспособлениями, например электрического дейст­вия, для нанесения небольших ударов заданной силы. Для приема и регист­рации сигналов может быть использована та же аппаратура, что и при ультразвуковом импульсном методе.Этот метод используется для контроля асфальтового и цементного бетонов в дорожных и аэродромных покрытиях и может быть применен также для испытания длинномерных (до 30 м) бетонных и железобетонных элементов. Вибрационный метод. Данный метод основан на использовании колебаний звуковой частоты и применяется при испытаниях образцов бе­тона (рис. 4).Рассматриваемый метод полезен при сооружении дорожных и аэ­родромных покрытий для получения быстрой и надежной информации о ходе технологического процесса и может также быть положен в основу автоматического управления.При этом о характеристиках материала судят по частотам, соответ­ствующим резкому увеличению измеряемых амплитуд при наступлении явления резонанса (откуда и другое наименование метода - «резонанс­ный»). Метод «бегущей волны». При этом оригинальном методе к реги­стрирующему прибору, помимо сигналов, воспринимаемых приемным пре­образователем, подводятся также сигналы генератора, возбуждающего не­прерывные колебания. В результате сложения этих сигналов на экране электронно-лучевой трубки появляются характерные изображения фигур Лиссажу. Меняя частоту в пределах ультразвукового и звукового диапазо­нов, а также положение и тип приемных преобразователей, можно наблю­дать изображения, соответствующие продольным, поперечным и поверхно­стным волнам и по ним оценивать характеристики материала на разной глубине его нахождения.

8.

Закрепление грунтов. Это технически сложный метод проведения ремонтных работ, заключающийся в упрочнении грунтов, при котором между частицами грунта искусственным путём создают дополнительные связи, обеспечивающие повышение прочности грунта и уменьшение его сжимаемости. Инъецированный метод предусматривает нагнетание различных растворов — отвердителей. Ук­репление грунтов рекомендуется производить следующими методами: силикатизацией, цементацией, битумизацией и смолизацией.

Силикатизацию применяют для закрепления крупнозернистых и мелкозернистых песков с коэффициентом фильтрации 0,0023 — 0,092 см/с. В грунт нагнетают поочередно раствор жидкого стекла и хлористого кальция. Этот метод дорогостоящий и трудоемкий, но обеспечивает высокую прочность грунта. При мелкозернистых и пылеватых песках с коэффициентом фильтрации 0,0006 — 0,006 см/с в грунт нагнетают раствор из жидкого стекла и фосфорной кислоты либо из жидкого стекла, серной кислоты и сернокислого аммония.

Битумизация. Сухие песчаные и скальные грунты можно укреплять методом битумизации, подавая в трещины через пробуренные скважины горячий битум специальными инъекторами. Холодную битумизацию грунтов выполняют битумной эмульсией с коагулянтом для устройства противофильтрационных завес в песчаных грунтах с коэффициентами фильтрации 0,012 — 0,12 см/с.

Цементацию применяют для закрепления рыхлых средне- и крупнозернистых песков, а также карстовых пустот. Этот метод состоит в том, что в грунт под давлением через пробуренные скважины нагнетают цементный раствор марки 400 и выше (водоцементное отношение 0,4:10). Для цементации карстовых пустот в раствор добавляют песок и другие инертные заполнители.

Смолизация. В песчаный грунт через инъектор нагнетают раствор из карбамидной смолы и соляной кислоты. Гель, который возникает при взаимодействии растворов, заполняет поры в песке и склеивает частицы песка между собой. В связи с высокой стоимостью карбамидных смол этот способ применяют в исключительных случаях.

Укрепление фундаментов. Укрепление бетонными обоймами целесообразно производить в малоэтажных (3 — 4 этажа) зданиях без подвала с фундаментами из бутовой безрастворной кладки с боль­шими щелями между отдельными камнями, заполненными грунтом или слабым раствором, имеющие незначительные напряжения и не требующие выполнения большого объема земляных работ (рис.2). Для кладки, выполненной из кирпича, бетонную обойму не приме­няют Перед началом работ швы очищают от грунта и слабого раствора и продувают сжатым воздухом. В бетонных обоймах используют бетон класса В12.5 с мелким гравием, хорошо подвижный.Уплотнение бетонной смеси производят игловибратором или простым штыкованием. Укрепление фундаментов допускается проводить отдельными участками длиной 1,5—2 м, что исключает нарушение устойчивости слабой безрастворной кладки фундаментов. Работы выполняют одновременно на 2 — 3 захватках.

Укрепление кладки фундаментов железобетонными обоймами с последующим инъекцированием раствора — наиболее эффективный способ ремонта ослабленных бутовых фундаментов, предотвращающий дальнейшее разрушение кладки и обеспечивающий снижение напряжения в грунте под их подошвой. В зависимости от конструктивных особенностей здания возможно одно- и двухстороннее усиление. Одностороннее усиление обычно устраивают в зданиях без подвала.
Работы выполняют в следующем порядке. Сначала открывают траншею шириной 0,8 — 1 м вдоль здания в зоне разрушения фундамента. Длина траншеи не должна превышать 6 м. Очищают поверхность кладки фундаментов от грязи и слабого раствора, разбирающийся от руки камень удаляют. Очищенную поверхность кладки промывают цементным молоком. Не допускается промывка поверхности фундамента водой под напором, что может привести к вымыванию раствора и интенсивному разрушению кладки. Дальнейшие работы по укреплению кладки можно производить после ее просушки. В швы кладки забивают металлические штыри из стали длиной 40 — 50 см, к которым приваривают арматурный каркас.

Его выполняют из стали класса А240C диаметром 18—20 мм и размером ячеек 150x150 мм. Затем в пустоты кладки устанавливают в шахмат­ном порядке инъекционные трубки на расстоянии 50 —60 см друг от друга с обязательной заделкой их цементным раствором (противо­положные концы трубок выводят выше отметки верха обоймы на 40 — 50 см), монтируют опалубку, заливают пространство пластичной бетонной смесью. Конструктивно толщину железобетонной обоймы принимают не менее 150 мм. Бетонирование производят по высоте в 2 — 3 приема с интервалами между ними не менее 2 сут.После окончания работ по устройству обоймы в установленные инъекционные трубки под давлением нагнетают цементный раствор консистенции 1:1 — 1: 15. Для изготовления раствора применяют портландцемент марки 400 и выше. Сначала подают раствор с меньшим содержанием цемента, затем раствор более густой консистенции, который заполняет пространство вокруг инъектора, образуя прочный столб диаметром 60—100 мм. Ориентировочный расход раствора, необходимого для полного закрепления кладки фундаментов, составляет 25—35% их объема.После выполнения работ срезают верхние части инъекционных трубок, разбирают опалубку, заполняют пазухи фундамента гли­нистым грунтом, тщательно послойно его трамбуя. В последнюю очередь производят восстановление отмостки.Рассмотренный метод укрепления фундаментов следует приме­нять для особо ценных зданий со значительными остаточными сроками эксплуатации.

Укрепление кладки фундаментов цементацией. Цементный раствор консистенции 1:1 — 1: 15 нагнетают в фундамент через предварительно установленные инъекторы. Их погружают в заранее устроенные отверстия, диаметр которых должен быть на 3 — 5 мм больше диаметра наконечника инъектора, а длина отверстия назначается проектом. Перед нагнетанием цементного раствора производят промывку скважин водой под напором до полного ее осветления. Цементация считается законченной, если в течение 10 — 20 мин не происходит поглощение раствора предельной консистенции при максимальном давлении 0,3 МПа.
Замена кладки фундаментов. Частичную замену кладки на по­ловину ее толщины выполняют на участке длиной не более 2,5 м. Для этого отрывают траншею шириной 0,8— 1 м, глубиной 0,5 м выше подошвы фундамента и разбирают ослабленный участок кладки. Оставшуюся кладку промывают цементным молоком и сверху делают новую кладку с плотным прилеганием к старой и заполнением швов раствором. Полную (на всю толщину) замену фундаментов произведет отдельными участками. До перекладки в кирпичные стены устанавливают по расчету цельные разгружающие стальные балки, которые стягивают болтами между собой. Болты устанавливают через 0,8-1м по длине. Разборку и перекладку допускается производить поочередно отдельными участками длиной не более 1 м.

Укрепление деревянных свайных фундаментов. Технически сложные и трудоемкие ремонтно-восстановительные работы, предусматривающие замену пораженных участков свай на бетонные, применяют при необходимости сохранения наиболее ценных зданий — памятников истории, архитектуры и культуры. Работы выполняют на захватках протяжённостью 1,2—1,5 м в такой последовательности. Вначале в установленной очередностью на всю глубину отрывают фундаменты с обязательным креплением откосов колодца. Глубине колодца равняется высоте срезки поврежденных свай плюс 0.5 м. Затем вырезают пораженные разрушителями деревянные элементы свайного фундамента. Допускается одновременно срезать не более четырёх свай без предварительного «вывешивания» стен здания разгружающей системой, состоящей из металлических балок, установленных в толще кирпичных стен. После этого монтируют опалубку и междуопалубочное пространство заполняют пластичным бетоном класса В 12,5, а верхнюю часть (0,4 — 0,5 м) — литым бетоном, обеспечивающим стык вновь устраиваемого бетонного раствора с кладкой подземной части здания. Укладка литого бетона ведётся под напором 40 — 50 см.

Усиление фундаментов. Подводка фундаментов — наиболее сложная работа по усилению фундаментов с изменением глубины заложения и применяется при необходимости передачи нагрузки от здания на более прочные грунты (рис. З). Подводку фундаментов рекомендуется производить при наличии в основании здания небольших по мощности насыпных грунтов, обжатие котрых вызывает их длительную неравномерную осадку. Подводку производят отдельными столбами из бетона размером 1 — 1,5 м. В нижней части применяют бетон пластичный класса В 12,5, а в верхней части на высоте 20 — 30 см под напором в 50 см укладывают литой бетон, который обеспечивает надежное соединение вновь подводимого фундамента с существующим.Работы выполняют в следующем порядке. Зону фундаментов, подлежащую усилению, разбивают на отдельные участки по 1,2 — 1,5 м и устанавливают очередность выполнения работ, заклю­чающуюся в том, что одновременно работы могут производиться на участках, отдаленных друг от друга, что исключает перенапряжение оснований. Участок, на котором выполняют работы, должен нахо­диться на расстоянии не менее 4 м от того места, где были произведены работы и бетон приобрел необходимую прочность. Подводку фундаментов начинают с наиболее ослабленных участков. В зоне слабых стен понизу в предварительно пробитые штрабы с двух сторон на цементном растворе устанавливают стальные балки. Пробивку штраб и установку разгружающих балок производят пооче­редно сначала с одной стороны, затем с другой, после надежного включения в работу балок путем тщательного расклинивания зазора между верхом балки и кладкой стальными пластинами и зачеканкой полусухим цементным раствором 1: 1 или 1: 2. Разгружающие стальные балки стягивают между собой болтами, установленными через 0,8—1 м. Затем в соответствии с очередностью, отрывают на требуемую глубину колодец (рис.4), выбирают часть грунта под подошвой фундамента для установки временного крепления фун­даментов на время производства работ, устанавливают элементы крепления, вынимают грунт до проектной отметки, устанавливают опалубку, закладывают фундамент. При достижении бетоном необ­ходимой прочности снимают опалубку, крепление, и с послойной утрамбовкой засыпают траншею. В такой же последовательности выполняют работы и на последующих участках.

Увеличение ширины подошвы фундамента. Изменение назначения и этажности здания, а также конструктивной схемы перекрытий нередко приводит к необходимости уширения подошвы фундаментов.

Прочность сопряжения новой кладки со старой проверяют на срез по неперевязанному шву, используя неравенство

N ≤ F Rср,

где N — нагрузка на уширяемую часть фундамента,Н; F - площадь сопряжения новой и старой кладки, hl, м2 (l - расчётная длина фундамента, м;);Ь — высота новой кладки, м); Rср — расчётное сопротивление «на срез» по неперевязанному шву.

Особое внимание следует уделять фундаментам точечных опор (колонн и столбов), имеющих, как правило, незначительное заглубление, для которых рекомендуется вокруг колонн или столбов устраивать железобетонную обойму с самостоятельной базой (рис.5).
Фундаменты старых зданий, в большинстве случаев выполненные из бутовых камней, относятся к жестким фундаментам с углом жесткости 300, поэтому выбор конструкции уширяемой части находится в зависимости от ее размера. При жесткой конструкции фундамента выполняют неармированную кладку, при гибкой конструкции — армированную.
Жесткую конструкцию уширения фундаментов используют при вписывании уширяемой части в зону, ограниченную толщиной стены и плоскостями, наклоненными под углами жесткости. При превышении уширенной частью зоны ограничения реакция грунта

вызовет изгиб фундамента, а следовательно, и растяжение кладки, а также её разрушение по сечению, превышающее ограничение зоны. Избежать разрушения кладки можно, либо увеличивая глубину заложения фундаментов до параметра, определяющегося углом жёсткости, либо введением в сечение гибкой арматуры (рис. 6, 7). Наиболее надежен метод уширения подошвы фундаментов с увеличением глубины заложения на величину, определяемую углом жёсткости, который применяют при увеличении ширины подошвы ленточных фундаментов. Отдельно стоящие фундаменты под колонны и столбы расширяют введением в сечение гибкой или жесткой арматуры. Но применение этого метода не дает нужного эффекта, как для включения в работу участков уширения необходима дальнейшая осадка фундамента, что приведет к возникновению реакции σΔ.Чем больше осадок Δh, тем большими будут реакции σ Δ. В то же время чем больше осадки Δh, тем больше грунты приближаются к состоянию разрушения.

Разгрузка фундаментов. Работам по укреплению или усилению фундаментов должны предшествовать мероприятия по их разгрузке, обеспечивающие устойчивость здания. Бывает временная и постоянная разгрузка фундаментов. Временная частичная разгрузка фундаментов достигается устройством отдельно стоящих, временно установленных по этажам разгружающих систем, состоящих стоек, прогонов и раскосов, либо разборкой перекрытий, находящихся в неудовлетворительном состоянии. Временная полная разгрузка фундаментов осуществляется вывешиванием стены на поперечные балки. Постоянная разгрузка фундаментов происходит при введении между капитальными стенами дополнительных или точечных опор (колонн, столбов), а также самостоятельных стен, воспринимающий часть нагрузки от перекрытий.

Частичная разгрузка. Временную разгружающую систему (рис. 8) применяют при необходимости укрепления (усиления) фундаментов без разборки перекрытий. В подвале или на первом этаже здания на расстоянии 1,5 м от стены вскрывают полы, тщательно утрамбовывают грунт со щебнем, укладывают постель из деревянных брусьев сечением 14 х 14 см в два ряда перпендикулярно друг другу по верху постели с шагом 1,5 — 2 м, в местах установки стоек укладывают опорный брус того же сечения. По верху стоек устанавливают перпендикулярно балкам перекрытия верхний развязочный брус, скрепленный со стойками скобами диаметром 12—14 мм. Стойки совместно с верхним брусом монтируют на опорные брусы и включают в работу, забив клинья из древесины твердых пород между стойками и опорным брусом, и благодаря этому снимают большую часть нагрузки от перекрытия на стены. Стойки через один пролет соединяют крестовыми связями. Установив разгружающую систему для перекрытия подвального (первого) этажа, приступают к устройству разгружающей системы последующих этажей, располагая их строго по вертикали. Основанием для разгружающей системы вышележащего этажа будет служить нижний брус, уложенный перпендикулярно направлению балок перекрытия.

Нарушение гидроизоляции и влажностного режима является причиной многочисленных дефектов как отдельных конструкций, так и зданий и сооружений в целом, устранение которых требует больших затрат.
Отсутствие дренажа или его некачественное выполнение (заиливание, засорение) приводит к затапливанию подвалов, подмыву и просадкам фундаментов.
Некачественная гидроизоляция подземных частей здания, находящихся ниже уровня грунтовых вод, также приводит к затапливанию помещений, усложняет их эксплуатацию и наносит большой ущерб оборудованию, материальным ценностям и строительным конструкциям.
Опыт эксплуатации подземных сооружений показывает, что проникновение грунтовых вод происходит обычно через неплотности в бетоне в местах примыкания стен к днищу, где чаще всего происходят перерывы в бетонировании, в результате которых ухудшается сцепление нового и старого бетона. Протечки могут происходить также в местах расположения закладных деталей, смотровых люков и т. п. В то же время при качественном выполнении монолитный железобетон обеспечивает надежную защиту от проникновения грунтовых вод, о чем может свидетельствовать многолетний опыт эксплуатации тоннелей метрополитена, расположенных под реками и водоемами, морских судов, доков и шлюзов.
Надежность гидроизоляции подземной части сооружений проверяется по наличию влаги, воды внутри подвала, а для емкостей — по падению уровня жидкости от проектной отметки. Емкость считается водонепроницаемой, если потери жидкости на третьи сутки с момента окончания заполнения не превышают 3 л на 1 м2 смачиваемой поверхности.
Восстановление гидроизоляции и влажностного режима в подземных сооружениях достаточно трудоемко, так как в отличие от наземных частей здания обнаружение этих дефектов встречает серьезные трудности. Сырость и протечки могут появляться в одном месте, а дефекты, их вызвавшие, — в другом.
Как правило, стены подвалов выполняются из кирпичной кладки или бетонных блоков и имеют большое количество швов, которые не обеспечивают их водонепроницаемость. Оклеечная наружная гидроизоляция служит обычно недолго, разрушаясь под действием грунтовых вод. Особенно опасно нарушение гидроизоляции при воздействии агрессивных грунтовых и техногенных вод.
Борьба с сыростью осуществляется путем улучшения воздухообмена, устройством приточно-вытяжной вентиляции, отвода атмосферных вод, организованного водоотвода с. кровли, соответствующей планировки территории вокруг здания, ремонта отмостки и т. п. При значительных дефектах необходимо заново устраивать гидроизоляцию с внешней стороны стен, предварительно тщательно очистив их от грунта. Эффективным средством гидроизоляции стен является устройство глиняного замка в виде послойно уложенной и уплотненной мятой жирной глины шириной 30-40 см.
Восстановление гидроизоляции возможно также путем инъекции цементного раствора с внешней стороны в местах предполагаемых протечек. Инъецирование производится водоцементным раствором (без песка), чтобы состав не отфильтровывался в порах грунта и мог проникать во все пустоты кладки.
Достаточно эффективным средством гидроизоляции стен подвала, имеющих недостаточную толщину, является устройство утолщенной цементной штукатурки или железобетонной рубашки толщиной 10-15 см. Перед выполнением этой работы с внешней стороны устраивают водопонижение или отводят поступающую воду через специальные трубки.
Восстановление внешней гидроизоляции при реконструкции осуществляется наклейкой 3-4 слоев гидроизола, проклеенных стеклотканью.
Чтобы защитить наклеечную гидроизоляцию от механических повреждений при обратной засыпке грунта, ее обычно защищают кирпичной кладкой в 0,5 керамического кирпича пластичного прессования или асбестоцементными листами.
При реконструкции строительных объектов особое внимание следует уделять надежной гидроизоляции кровли, которая в большей степени, чем остальные элементы здания, подвергается неблагоприятным атмосферным воздействиям. Дефекты кровель приводят к увлажнению всех конструкций здания и снижению их эксплуатационной надежности. Эти дефекты вызывают обрушение карнизов, штукатурки фасадов. Причиной появления дефектов, в частности, в металлических кровлях является их плохое содержание (отсутствие периодической покраски, которую надо производить раз в 3-4 года), неисправности воронок, водосточных труб и т. д.
В рулонных кровлях нарушение гидроизоляции происходит вследствие неровностей основания, некачественных водоразделов и т.п., что приводит к образованию ям, застою воды, льда, вспучиванию и постепенному разрушению покрытия. Под воздействием солнечной радиации часто происходит сползание мастики в местах значительных уклонов (опорные части ферм, места примыканий к стенам, парапетам, вентиляционным шахтам, температурно-осадочным швам и др.).
Значительные дефекты в кровлях возникают в цехах с повышенной влажностью (бетоносмесительных узлах, местах расположения пропарочных камер, банях и т. п.), где конденсируется пар на потолочной поверхности, происходит увлажнение бетона и вследствие капиллярного подсоса увлажняется утеплитель кровли. В результате снижения теплоизоляционных свойств происходит постепенное разрушение плит покрытия, коррозия арматуры, отслоение защитного слоя и даже обрушение конструкции.
Устранение указанных дефектов достигается устройством эффективной принудительной вентиляции, снижением утечек пара, гидрозащитой внутренних поверхностей плит пленочным покрытием, гидрофобизацией и т.п.

9.





Дата публикования: 2015-01-24; Прочитано: 729 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...