Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Можно доказать, что предел суммы, стоящий в правой части равенства равен интегралу 4 страница



- от выбора точек на элементе разбиения, в которых вычисляются значения функции,

- от способа «измельчения» разбиения, лишь бы выполнялось условие .

Свойства интеграла.

1. Линейность а) = + , б) = . Заметим, что первое свойство иногда называют аддитивностью, второе – однородностью. Доказательство проводится через интегральные суммы, как в определенном, кратных и криволинейных интегралах.

2. Аддитивность по множеству. Пусть . Тогда = + . Доказательство проводится через интегральные суммы с фиксацией граничной точки дуг на основании теоремы существования так же, как в определенном, кратных и криволинейных интегралах..

3. «Ориентируемость» = , где –L – та же дуга L, но проходимая в другом направлении. Доказательство основано на том, что для дуги L , а для дуги –L и проводится через интегральные суммы, как в определенном и криволинейных интегралах..

4. . Заметим, в правой части неравенства стоит криволинейный интеграл от функции , принимающей только действительные значения. Доказательство. . Переходя к пределу при , получим .

5. Пусть

Доказательство. По свойству 4 .

6. Доказательство. Достаточно показать, что и использовать свойство 1б). . Переходя к пределу при , получим .

Три формы записи интеграла.

= =

= = . Это – 1 форма записи – в виде двух криволинейных интегралов.

Параметризуем дугу L: , .

. Подставляя в первую форму записи, имеем:

= .

Это – 2 ая форма записи – в виде двух определенных интегралов.

Параметризуем дугу L:z=z(t),

. Это – третья форма записи – в виде определенного интеграла от комплексно - значной фунции действительной переменной.

37) Теорема Коши. Интегральная формула Коши.

Интегральная теорема Коши (для односвязной области).

Пусть G – односвязная область, пусть функция f(z) – аналитическая в G функция, пусть L – кусочно—гладкий контур, принадлежащий области G. Тогда .

Теорему можно сформулировать и так: интеграл от аналитической функции вдоль кусочно-гладкого контура равен нулю.

Доказательство.

Обозначим D – внутренность контура L. Запишем формулу Грина . Представим интеграл в первой форме записи через два криволинейных интеграла =

Применим к каждому слагаемому в правой части равенства формулу Грина. В первом интеграле примем P = u, Q = -v.

(для аналитической функции выполнены условия Коши – Римана ).

Во втором интеграле примем P = v, Q = u.

(условие Коши – Римана).

Поэтому .

Следствие. Пусть L1, L2 – две кусочно-гладких дуги в односвязной области G, соединяющие точки A, B. Пусть функция f(z) – аналитическая в области G. Тогда = .

Можно дать словесную формулировку: интеграл от аналитической функции в односвязной области вдоль кусочно-гладкой дуги не зависит от формы дуги, а зависит только от начальной и конечной точек дуги.

Доказательство. Образуем контур . По интегральной теореме Коши

. Но . Следовательно, .= .

Поэтому результат в рассмотренном выше примере не случаен.

Интегральная теорема Коши для многосвязной области.

Пусть кусочно-гладкие контуры лежат внутри контура и вне друг друга. Пусть - аналитическая функция в области между контурами и на самих этих контурах. Тогда .

Соединим контуры линиями AB, CD, EK. По интегральной теореме Коши интегралы по контуру AbpCDqEKmA и по контуру AnKEsDCrBA равны нулю. Представим эти интегралы как сумму интегралов по составляющим контуры дугам и сложим эти интегралы, сокращая интегралы по одним и тем же дугам в разных направлениях

Складывая интегралы, получим

. Отсюда имеем

. Теорема доказана для случая n = 2. Для n > 2 доказательство аналогично.

Следствие 1. В условиях теоремы при n = 1 будет . Поэтому, если в какой-либо точке нарушается аналитичность функции, то интеграл может быть взят по любому кусочно-гладкому не самопересекающемуся контуру, охватывающему эту точку, мы получим один и тот же результат.

Следствие 2. Если кусочно-гладкий контур один раз охватывает некоторую точку, .а контур L n раз охватывает эту точку, то в условиях теоремы . Докажите это самостоятельно.

Интегральная формула Коши.

Интегральная формула Коши

Пусть функция аналитическая в односвязной области G. Пусть кусочно-гладкий контур L принадлежит G вместе со своей внутренностью D. Пусть , тогда  

38)Степенные ряды. Теорема Абеля.

Степенные ряды - это частный случай функциональных рядов, в котором члены ряда представляют собой степени отклонения переменной от некоторой фиксированной точки плоскости (центра сходимости ряда). Степенные ряды действительной переменной сходятся в интервале , где - радиус сходимости ряда. Точно так же степенной ряд комплексной переменной сходится на множестве , только в комплексных числах это множество представляет собой круг без границы. Сходимость ряда на границе исследуется отдельно.

Теорема Абеля. Если степенной ряд сходится в точке , то он абсолютно сходится в круге . Если степенной ряд расходится в точке , то он расходится во внешности круга .

Доказательство (аналогично случаю действительной переменной).

1) Пусть ряд сходится в точке и .

Так как ряд сходится в точке , то по необходимому признаку сходимости ряда .

Тогда .

Исследуем степенной ряд на абсолютную сходимость. Рассмотрим ряд из модулей членов ряда. Оценим общий член ряда из модулей.

.

Ряд из модулей исходного ряда сходится по первому признаку сравнения числовых рядов (ряд сравнения – сходящаяся бесконечно убывающая геометрическая прогрессия ). Следовательно, исходный ряд в области сходится абсолютно.

Замечание. Казалось бы, что из признака Вейерштрасса в области следует равномерная сходимость исходного ряда, но здесь , а в признаке Вейерштрасса требуется указать один мажорирующий ряд для всех точек рассматриваемой области, то есть не должно зависеть от . Поэтому равномерную сходимость ряда в области утверждать нельзя. Однако если взять ( не зависит от ), то в области степенной ряд будет сходиться равномерно по признаку Вейерштрасса.

2) Пусть ряд расходится в точке и .

Если ряд сходится в точке , то по доказанному в пункте 1), он должен абсолютно сходиться в точке , следовательно, сходиться в точке . Это противоречит тому, что исходный ряд расходится в точке , следовательно исходный ряд расходится в области .

39) Разложение функции комплексного переменного в ряд Тейлора.

Рядом Тейлора называется степенной ряд вида (предполагается, что функция является бесконечно дифференцируемой).

Рядом Маклорена называется ряд Тейлора при , то есть ряд .

Теорема. Степенной ряд является рядом Тейлора для своей суммы.

Доказательство. Пусть и степенной ряд сходится в круге . Подставим в разложение , получим .

Так как сумма степенного ряда – функция аналитическая, мы можем дифференцировать функцию, а так как степенной ряд сходится равномерно внутри круга сходимости, мы можем его дифференцировать почленно. Полученный ряд будет сходиться в том же круге, так как радиус сходимости при дифференцировании не меняется. Поэтому сумма этого ряда будет фунцией аналитической в том же круге. Ее вновь можно дифференцировать, дифференцируя почленно степенной ряд и т.д. Отсюда следует, что если аналитическая функция является суммой степенного ряда (это будет показано позже), то она является бесконечно дифференцируемой функцией. Вычислим коэффициенты в степенных рядах, полученных почленным дифференцированием. = ,

, , ,

, , ,

Продолжая этот процесс, получим . Это – коэффициенты ряда Тейлора.

Запишем разложения в ряд Маклорена основных элементарных функций.



Так как эти формулы справедливы на всей действительной оси, то по теореме Абеля они справедливы и на всей комплексной плоскости (в круге с началом координат бесконечного радиуса).

, . , .

(интегрируя предыдущую формулу)

,

40) Свойства аналитических функций.

Функция называется аналитической в некоторой области , если она дифференцируема в этой области, а ее производная непрерывна. Из определения и свойств производных, следует, что необходимым и достаточным условием аналитичности функции является непрерывность частных производных функций и , которые также должны подчиняться условиям Коши-Римана (21).

Из определения следуют свойства аналитических функций, которые часто полезно использовать при решении задач:

если функция является аналитической в области , то она непрерывна в этой области;

1. если и - аналитические функции в области , то их сумма и произведение также являются аналитическими в области , а функция является аналитической всюду, где ;

2. если является аналитической в области комплексной плоскости , а в области ее значений определена аналитическая функция , то функция является аналитической функцией в области ;

3. если является аналитической функцией в области и в окрестности некоторой точки , то в окрестности точки области значений определена обратная функция комплексной переменной , , которая является аналитической и имеет место формула

41) Основная теорема алгебры.

42) Ряд Лорана.

Рядом Лорана называется ряд = + .

Второе слагаемое представляет собой степенной ряд и, как всякий степенной ряд, сходится в круге . Это слагаемое называется правильной частью ряда Лорана и является, как сумма степенного ряда аналитической функцией.Первое слагаемое называется главной частью ряда Лорана. Делая в нем замену , запишем главную часть в виде . Относительно переменной t это – степенной ряд, сходящийся в некотором круге . Возвращаясь к переменной z, получим, что главная часть сходится во внешности круга, радиуса r:

. Ряд Лорана сходится в области, представляющей собой пересечение областей сходимости правильной и главной частей. Поэтому область сходимости ряда Лорана представляет собой круговое кольцо . Радиусы сходимости r, R определяются для степенных рядов обычным образом, сходимость на границах кольца также исследуется, как в степенных рядах. Кольцо может быть вырождено, представлять собой окружность, если r = R или пустое множество, если r > R.

Теорема Лорана.

Функция , аналитическая в круговом кольце и на его границе, разлагается в нем в сходящийся ряд Лорана.

43) Пусть функция - аналитическая в некоторой проколотой окрестности точки . Если существует комплексное число A, доопределяя которым функцию в самой точке, удается сделать функцию аналитической в окрестности точки (включая точку ), то точка называется правильной точкой функции . Если такого числа не существует, то точка называется изолированной особой точкой (однозначного характера).





Дата публикования: 2015-02-03; Прочитано: 141 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.019 с)...