Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Источники аммиака в организме и роль глутамина в обезвреживании и транспорте аммиака. Глутаминаза почек



Билет № 21

Вопрос

Охарактеризуйте второй класс ферментов. Каков тип катализируемых ими реакций? Назовите важнейшие группы ферментов внутри класса. Приведите примеры и покажите химизм реакций.

2 класс – трансферазы – ферменты переноса. Катализируют перенос целых атомных группировок с одного соединения на другое (например, остатков моносахаридов, аминокислот, остатков фосфорной кислоты, метильных и аминных групп и т.д.);

В зависимости от характера переносимых остатков (одноуглеродные, альдегидные и кетонные, ацильные, гликозильные и др.) или групп (содержащие азот, фосфор или серу) класс разделили на восемь подклассов. Подклассы выделены в зависимости от химической природы переносимых групп (например, одноуглеродный остаток может быть метилом, формилом или карбоксилом; гликозильный остаток - гексозилом или пентозилом и т.п.).

Среди трансфераз имеются ферменты, катализирующие реакции с элементами синтеза. Чтобы подчеркнуть элемент синтеза в катализируемой реакции, для названия таких ферментов (как и фермент других классов, кроме синтетаз) применяют термин “ синтаза “.

Фермент: S-аденозилметионингуанидинацетат-метилтрансфераза, КФ 2.1.1.2

Вопрос

Источники аммиака в организме и роль глутамина в обезвреживании и транспорте аммиака. Глутаминаза почек.

Аммиак (NН3) – продукт обмена большинства соединений, содержащих амино- и амидогруппы. Главным путём образования аммиака служит окислительное дезаминирование.

Пути образования: катаболизм АК (прямое и непрямое дезаминирование), дезаминирование биогенных аминов, катаболизм пуринов и пиримидинов, катаболизм азотистых компонентов липидов и углеводов.

Пути утилизации: вост.аминирование а-кетокислот, образование глутамина и аспарагина, образование солей аммония, биосинтез мочевины

Глутамин - нейтральное нетоксичное соединение, способное легко проходить через клеточные мембраны. В виде этой аминокислоты аммиак транспортируется в крови. В крови здоровых людей содержание глутамина существенно превышает содержание других аминокислот. Глутамин, помимо участия в синтезе белка, служит источником азота в биосинтезе гистидина, глюкозамина, пуриновых и пиримидиновых нуклеотидов. С кровью глутамин поступает в печень и почки. Здесь он под действием фермента глутаминазы превращается в глутамат и аммиак. При участии аспарагиназы также происходит образование аммиака из аспарагина.

Клетки почек поглощают из циркулирующей крови глутамин. Фермент глутаминаза в почках катализирует гидролиз глутамина с образованием глутамата и аммиака.

Образующийся глутамат может в дальнейшем подвергаться дезаминированию при участии глутаматдегидрогеназы. Таким образом, из одной молекулы глутамина всего может образоваться две молекулы аммиака.

Глутаминаза (Glutaminase) - фермент, присутствующий в почках; катализирует расщепление аминокислоты глутамина до аммиака и глютаминовой кислоты: один из этапов образования мочевины

В почках же аммиак образуется преимущественно из глутамина, так что последний можно рассматривать как нетоксичную форму аммиака, который совершает челночные движения между печенью и почками. Глутаминаза почек действует подобно глутаминазе печени, освобождая глутамат и NH3 путем простой реакции гидролиза Однако фермент почек отличается тем, что его активность значительно возрастает под влиянием неорганического фосфата.

Вопрос

Инсулин: строение и биосинтез. Влияние на обмен жиров и аминокислот.

Инсулин - полипептид, состоящий из двух полипептидных цепей. Цепь А содержит 21 аминокислотный остаток, цепь В - 30 аминокислотных остатков. Обе цепи соединены между собой двумя дисульфидными мостиками. Инсулин может существовать в нескольких формах: мономера, димера и гексамера. Гексамерная структура инсулина стабилизируется ионами цинка, который связывается остатками Гис в положении 10 В-цепи всех 6 субъединиц.

Молекула инсулина содержит также внутримолекулярный дисульфидный мостик, соединяющий шестой и одиннадцатый остатки в А-цепи.

Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последовательного протеолиза превращаются в активный гормон. Биосинтез препроинсулина начинается с образования сигнального пептида на полирибосомах, связанных с ЭР. Сигнальный пептид проникает в просвет ЭР и направляет поступление в просвет ЭР растущей полипептидной цепи. После окончания синтеза препроинсулина сигнальный пептид, включающий 24 аминокислотных остатка, отщепляется.

Проинсулин (86 аминокислотных остатков) поступает в аппарат Гольджи, где под действием специфических протеаз расщепляется в нескольких участках с образованием инсулина (51 аминокислотный остаток) и С-пептида, состоящего из 31 аминокислотного остатка.

Инсулин и С-пептид в эквимолярных количествах включаются в секреторные гранулы. В гранулах инсулин соединяется с цинком, образуя димеры и гексамеры. Зрелые гранулы сливаются с плазматической мембраной, и инсулин и С-пептид секретируются во внеклеточную жидкость в результате экзоцитоза. После секреции в кровь олигомеры инсулина распадаются. Т1/2 инсулина в плазме крови составляет 3-10 мин, С-пептида - около 30 мин.

Влияние инсулина на метаболизм жиров. В печени и жировой ткани инсулин стимулирует синтез жиров, обеспечивая получение для этого процесса необходимых субстратов (ацетил-КоА, α-глицерофосфат и NADPH) из глюкозы. В адипоцитах инсулин активирует ацетил КоА-карбоксилазу и ЛП-липазу и индуцирует синтез синтазы жирных кислот, ацетил-КоА-карбоксилазы и ЛП-липазы. Инсулин в жировой ткани тормозит мобилизацию жиров. Он активирует фосфатазу, которая дефосфорилирует и тем самым инактивирует гормончувствительную ТАГ-липазу. Таким образом, под влиянием инсулина снижается концентрация жирных кислот, циркулирующих в крови. Инсулин стимулирует потребление нейтральных аминокислот в мышцах и синтез белков в печени, мышцах и сердце.

Задача.

У новорожденного была отмечена желтушность кожи, при этом содержание билирубина в крови было умеренно повышено (за счет непрямого, свободного билирубина), кал интенсивно окрашен, повышено было также количество стеркобилина. В моче билирубина не найдено. О каком типе желтухи в данном случае идет речь.

Гемолитическая желтуха новорожденного?





Дата публикования: 2015-02-03; Прочитано: 3224 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...