Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Охрана труда 4 страница



38. Как влияют неблагоприятные метеорологические условия на организм человека и способы нормализации микроклимата производственных помещений? Существенное влияние на состояние организма человека, его работоспособность оказывает микроклимат (метеорологические условия) в производственных помещениях - климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха и теплового излучения нагретых поверхностей.Микроклимат производственных помещений, в основном, влияет на тепловое состояние организма человека и его теплообмен с окружающей средой.Несмотря на то, что параметры микроклимата производственных помещений могут значительно колебаться, температура тела человека остается постоянной (36,6 °С). Свойство человеческого организма поддерживать тепловой баланс называется терморегуляцией. Нормальное протекание физиологических процессов в организме возможно лишь тогда, когда выделяемое организмом тепло непрерывно отводится в окружающую среду. Отдача теплоты организмом человека во внешнюю среду происходит тремя основными способами (путями): конвекцией, излучением и испарением.* Снижение температуры при всех других одинаковых условиях приводит к росту теплоотдачи путем конвекции и излучения и может привести к переохлаждению организма.
* При высокой температуре практически все тепло, которое выделяется, отдается в окружающую среду испарением пота. * Если микроклимат характеризуется не только высокой температурой, но и значительной влажностью воздуха, то пот не испаряется, а стекает каплями с поверхности кожи.
Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и эрозии, загрязнению болезнетворными микробами. Вода и соли, выделяемые из организма потом, должны замещаться, поскольку их потеря приводит к сгущиванию крови и нарушению деятельности сердечно-сосудистой системы. Повышение скорости движения воздуха способствует усилению процесса теплоотдачи конвекцией и испарением пота.Длительное влияние высокой температуры в сочетании со значительной влажностью может привести к накоплению тепла в организме и к гипертермии — состоянию, при котором температура тела повышается до 38...40 °С.
При низкой температуре, значительной скорости и влажности воздуха возникает переохлаждение организма (гипотермия). В следствие воздействия низких температур могут возникнуть холодовые травмы.Параметры микроклимата оказывают также существенное влияние на производительность труда и на травматизм. Создание оптимальных метеорологических условий в производственных помещениях является сложной задачей, решить которую можно за счет применения следующих мероприятий и средств:* Усовершенствование технологических процессов и оборудования. Внедрение новых технологий и оборудования, не связанных с необходимостью проведения работ в условиях интенсивного нагрева даст возможность уменьшить выделение тепла в производственные помещения. * Рациональное размещение технологического оборудования. Основные источники тепла желательно размещать непосредственно под аэрационным фонарем, около внешних стен здания и в один ряд на таком расстоянии друг от друга, чтобы тепловые потоки от них не перекрещивались на рабочих местах. * Автоматизация и дистанционное управление технологическими процессами позволяют во многих случаях вывести человека из производственных зон, где действуют неблагоприятные факторы.* Рациональная вентиляция, отопление и кондиционирование воздуха. Они являются наиболее распространенными способами нормализации микроклимата в производственных помещениях. Создание воздушных и водовоздушных душей широко используется в борьбе с перегревом рабочих в горячих цехах. * Рационализация режимов труда и отдыха достигается сокращением длительности рабочего времени за счет дополнительных перерывов, созданием условий для эффективного отдыха в помещениях с нормальными метеорологическими условиями. * Применение, теплоизоляции оборудования и защитных экранов. В качестве теплоизоляционных материалов широко используют: асбест, асбоцемент, минеральную вату, стеклоткань, керамзит, пенопласт.* Использование средств индивидуальной защиты. Важное значение для профилактики перегрева организма имеют индивидуальные средства защиты.

39. Что понимается под ультрафиолетовым излучением, его основные характеристики, классификация? Солнце является источником радиации в широком диапазоне длин волн. До поверхности Земли доходит УФ-излучение в диапазоне 400—280 нм, более короткие волны УФ-излучения Солнца поглощаются озоном стратосферы. Избыточному воздействию солнечной радиации подвергаются люди, работа которых связана с пребыванием на открытом воздухе (сельскохозяйственные рабочие разных специальностей, строительные и железнодорожные рабочие, спасатели, шахтеры открытых разработок, персонал солнечных электростанций и др.).Любой материал, нагретый до температуры, превышающей 2500 К, начинает генерировать УФ-излучение. Источники биологически эффективного УФ-излучения можно подразделить на газоразрядные и флуоресцентные лампы и источники температурного (теплового) излучения. Наиболее важные типы газоразрядных ламп: ртутные лампы низкого давления (большая часть излучаемой энергии имеет длину волны 253,7 нм соответствует максимуму бактерицидной эффективности, используется для борьбы с вредными микроорганизмами) и высокого давления (с длинами волн 254, 297, 303, 313 нм — широко используются в фотохимических реакторах, в печатном деле, для фототерапии кожных болезней); ксеноновые лампы высокого давления (спектр близок к солнечному над стратосферой; применяются так же, как ртутные); импульсные лампы (оптические спектры зависят от использованного газа — ксенон, криптон, аргон, неон и др.).В люминесцентных лампах электрический дуговой разряд создается в паре и инертном газе при низком давлении. Спектр зависит от использованного ртутного люминофора. К этим лампам относятся следующие источники излучения: люминесцентные солнечные лампы (длины волн 275—300 нм, максимум — 313 нм, хороши для загара); источники невидимого излучения ("черного света") — диапазон длин волн 300—400 нм (используются для обеспечения люминесценции в красках, чернилах, для фототерапии).Источниками теплового УФ-излучения является сварка кислородно-ацетиленовыми, кислородно-водородными, плазменными горелками. Интенсивность различных диапазонов УФ-излучения при сварке зависит от многих факторов, включая материал, из которого изготовлены электроды, разрядный ток и газ, окружающий дугу.

40. Влияние ультрафиолетового излучения на организм человека и способы защиты от неблагоприятного воздействия. Воздействие УФ-излучения приводит в первую очередь к ряду специфических изменений в коже и органе зрения. Установлено, что оно может сопровождаться и общими неблагоприятными реакциями организма. Наиболее подвержен повреждающему действию УФ-излучения зрительный анализатор. Острые поражения глаз, т. н. электроофтальмии (фотоофтальмии), представляют собой острый конъюнктивит. Заболеванию предшествует латентный период, продолжительность которого чаще всего составляет 12 ч. Проявляется заболевание ощущением наличия постороннего тела (песка) в глазах, светобоязнью, слезотечением, блефароспазмом. Нередко обнаруживается эритема кожи лица и век, заболевание длится 2—3 дня. С хроническими поражениями связывают хронический конъюнктивит, блефарит, катаракту хрусталика. Профилактические мероприятия по предупреждению электроофтальмий сводятся к применению светозащитных очков или щитков при электросварочных и др. работах.Поражения кожи проявляются в виде острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления с повышением температуры, ознобом, головными болями, диспепсическими явлениями. В дальнейшем наступают гиперпигментация и шелушение. Классическим примером поражения кожи, вызванного УФ-излучением, служит солнечный ожог. Хронические изменения кожных покровов, вызванные УФ-излучением, выражаются в "старении" (солнечный эластоз), развитии кератоза, атрофии эпидермиса; возможны злокачественные новообразования. Для защиты кожи от УФ-излучения используются защитная одежда, противосолнечные экраны (навесы и т. п.), специальные кремы.В целях профилактики неблагоприятного воздействия УФ-излучения важно соблюдать гигиенические нормативы, в частности СН № 4557—88 "Санитарные нормы ультрафиолетового излучения в производственных помещениях".

41. Что понимается под электромагнитными полями, их основные характеристики, классификация? Источниками электромагнитных полей являются, например, индукционная катушка, рабочий конденсатор, отдельные элементы генераторов катушки контуров и связи, конденсаторы, подводящие линии, трансформаторы, антенны и др. Степень воздействия электромагнитных излучений на организм человека зависит от диапазона частот, интенсивности воздействия соответствующего фактора, продолжительности облучения, характера излучения, режима облучения, размеров облучаемой поверхности тела и индивидуальных особенностей организма. Биологическое воздействие электромагнитных полей более высоких частот вызывают в основном с их тепловым и аритмическим эффектом. В зависимости от диапазона частот в основу гигиенического нормирования электромагнитных излучений положены разные принципы. Критерием безопасности для человека, находящегося в электрическом поле промышленной частоты, принята напряжённость этого поля. Гигиенические нормы для персонала, который систематически находится в этой зоне, установлены ГОСТ 12.1.002-75 “ССБТ. Для постоянного магнитного поля предельно-допустимым уровнем на рабочем месте является напряжённость, которая не должна превышать 8 кА/м. Одним из наиболее эффективных и часто применяемых методов защиты от низкочастотных и радио излучений является экранирование. Для экранов используются, главным образом, материалы с большой электрической проводимостью. В качестве средств индивидуальной защиты применяются спецодежда, изготовленная из металлизированной ткани в виде комбинезонов, халатов, передников, курток с капюшонами и вмонтированными в них защитными очками.

42. Влияние электромагнитных полей на организм человека и способы защиты от неблагоприятного воздействия. Особенно чувствительны к неблагоприятному воздействию электромагнетизма эмбрионы и дети. Человек, создав такой вид излучения, не успел выработать к нему защиты. Первичным проявлением действия электромагнитной энергии является нагрев, который может привести к изменениям и даже к повреждениям тканей и органов. Механизм поглощения энергии достаточно сложен. Наиболее чувствительными к действию электромагнитных полей являются центральная нервная система (субъективные ощущения при этом - повышенная утомляемость, головные боли и т. п) и нейроэндокринная система. С нарушением нейроэндокринной регуляции связывают эффект со стороны сердечно-сосудистой системы, системы крови, иммунитета, обменных процессов, воспроизводительной функции и др. Влияние на иммунную систему выражается в снижении фагоцитарной активности нейтрофилов, изменениях комплиментарной активности сыворотки крови, нарушении белкового обмена, угнетении Т-лимфоцитов. Возможны также изменение частоты пульса, сосудистых реакций. Описаны изменения кроветворения, нарушения со стороны эндокринной системы, метаболических процессов, заболевания органов зрения. Было установлено, что клинические проявления воздействия радиоволн наиболее часто характеризуются астеническими, астеновегетативными и гипоталамическими синдромами: 1. Астенический синдром. Этот синдром, как правило, наблюдается в начальных стадиях заболевания и проявляется жалобами на головную боль, повышенную утомляемость, раздражительность, нарушение сна, периодически возникающие боли в области сердца. 2. Астеновегетативный или синдром нейроциркулярной дистонии. Этот синдром характеризуется ваготонической направленностью реакций (гипотония, брадикардия и др.). 3. Гипоталамический синдром. Больные повышенно возбудимы, эмоционально лабильны, в отдельных случаях обнаруживаются признаки раннего атеросклероза, ишемической болезни сердца, гипертонической болезни. Поля сверхвысоких частот могут оказывать воздействие на глаза, приводящее к возникновению катаракты (помутнению хрусталика), а умеренных - к изменению сетчатки глаза по типу ангиопатии. В результате длительного пребывания в зоне действия электромагнитных полей наступают преждевременная утомляемость, сонливость или нарушение сна, появляются частые головные боли, наступает расстройство нервной системы и др. Многократные повторные облучения малой интенсивности могут приводить к стойким функциональным расстройствам центральной нервной системы, стойким нервно-психическим заболеваниям, изменению кровяного давления, замедлению пульса, трофическим явлениям (выпадению волос, ломкости ногтей и т. п.). Защита человека от опасного воздействия электромагнитного облучения осуществляется рядом способов, основными из которых являются: уменьшение излучения непосредственно от самого источника, экранирование источника излучения, экранирование рабочего места, поглощение электромагнитной энергии, применение индивидуальных средств защиты, организационные меры защиты.Для реализации этих способов применяются: экраны, поглотительные материалы, аттенюаторы, эквивалентные нагрузки и индивидуальные средства.Экраны предназначены для ослабления электромагнитного поля в направлении распространения волн. Степень ослабления зависит от конструкции экрана и параметров излучения. Существенное влияние на эффективность защиты оказывает также материал, из которого изготовлен экран.Толщину экрана, обеспечивающую необходимое ослабление, можно рассчитать. Однако расчетная толщина экрана обычно мала, поэтому она выбирается из конструктивных соображений. При мощных источниках излучения, особенно при длинных волнах, толщина экрана может быть принята расчетной.Толщина экрана в основном определяется частотой и мощностью излучения и мало зависит от применяемого металла.

43. Что понимается под лазерным излучением, влияние на организм человека и способы защиты от неблагоприятного воздействия? Лазерное излучение. Лазер, или оптический квантовый генератор, — это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. В зависимости от характера активной среды лазеры подразделяются на твердотелые (на кристаллах или стеклах), газовые, лазеры на красителях, химические, полупроводниковые и др. По степени опасности лазерного излучения для обслуживающего персонала лазеры подразделяются на четыре класса: • класс I (безопасные) — выходное излучение не опасно для глаз; • класс II (малоопасные) — опасно для глаз прямое или зеркально отраженное излучение; • класс III (среднеопасные) — опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение; • класс IV (высокоопасные) — опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности. Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера. При использовании лазеров II—III классов для исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения. Лазеры IV класса опасности размещают в отдельных изолированных помещениях и обеспечивают дистанционным управлением. К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, снижающие облучения глаз до ПДУ. Работающим с лазерами необходимы предварительные и периодические (1 раз в год) медицинские осмотры терапевта, невропатолога, окулиста.

44. Что понимается под ионизирующим излучением, характеристики, классификация? Наиболее разнообразны по видам ионизирующих излучений так называемые радиоактивные излучения, образующиеся в результате самопроизвольного радиоактивного распада атомных ядер элементов с изменением физических и химических свойств последних. Альфа-частица — это положительно заряженные ионы гелия, образующиеся при распаде ядер, как правило, тяжелых естественных элементов (радия, тория и др.). Эти лучи не проникают глубоко в твердые или жидкие среды, поэтому для защиты от внешнего воздействия достаточно защититься любым тонким слоем, даже листком бумаги. Бета-излучение представляет собой поток электронов, образующихся при распаде ядер как естественных, так и искусственных радиоактивных элементов. Бета-излучения обладают большей проникающей способностью по сравнению с альфа-лучами, поэтому и для защиты от них требуются более плотные и толстые экраны. Гамма-излучение, или кванты энергии (фотоны), представляют собой жесткие электромагнитные колебания, образующиеся при распаде ядер многих радиоактивных элементов. Эти лучи обладают гораздо большей проникающей способностью. Поэтому для экранирования от них необходимы специальные устройства из материалов, способных хорошо задерживать эги лучи (свинец, бетон, вода). Рентгеновское излучение образуется при работе рентгеновских трубок, а также сложных электронных установок (бетатронов и т. п.). По характеру рентгеновские лучи во многом сходны с гамма-лучами и отличаются от них происхождением и иногда длиной волны: рентгеновские лучи, как правило, имеют большую длину волны и более низкие частоты, чем гамма-лучи.

45. Влияние ионизирующих излучений на организм человека и способы защиты от неблагоприятного воздействия. Различают внешнее и внутреннее облучение организма. Под внешним облучением понимают воздействие на организм ионизирующих излучений от внешних по отношению к нему источников. Внутреннее облучение осуществляется радиоактивными веществами, попавшими внутрь организма через дыхательные органы, желудочно-кишечный тракт или через кожные покровы. Источники внешнего излучения - космические лучи, естественные радиоактивные источники, находящиеся в атмосфере, воде, почве, продуктах питания и др., источники альфа-, бета-, гамма, рентгеновского и нейтронного излучений, используемые в технике и медицине, ускорители заряженных частиц, ядерные реакторы (в том числе и аварии на ядерных реакторах) и ряд других.Радиоактивные вещества, вызывающие внутреннее облучение организма, попадают в него при приеме пищи, курении, питье загрязненной воды. Поступление радиоактивных веществ в человеческий организм через кожу происходит в редких случаях (если кожа имеет повреждения или открытые раны). Внутреннее облучение организма длится до тех пор, пока радиоактивное вещество не распадется или не будет выведено из организма в результате процессов физиологического обмена. Внутреннее облучение опасно тем, что вызывает длительно незаживающие язвы различных органов и злокачественные опухоли.При работе с радиоактивными веществами значительному облучению подвергаются руки операторов. Под действием ионизирующих излучений развивается хроническое или острое (лучевой ожог) поражение кожи рук. Под влиянием ионизирующих излучений у человека возникает лучевая болезнь. Различают три степени ее: первая (легкая), вторая и третья (тяжелая).Симптомами лучевой болезни первой степени являются слабость, головные боли, нарушение сна и аппетита, которые усиливаются на второй стадии заболевания, но к ним дополнительно присоединяются нарушения в деятельности сердечно-сосудистой системы, изменяется обмен веществ и состав крови, происходит расстройство пищеварительных органов. Опасно воздействие на организм человека и малых доз радиации, так как при этом могут произойти нарушение наследственной информации человеческого организма, возникнуть мутации. Для уменьшения облучения персонала все работы с этими источниками проводят с использованием длинных захватов или держателей. Защита временем заключается в том, что в работу с радиоактивными источниками проводят за такой период времени, чтобы доза облучения, полученная персоналом, не превышала предельно допустимого уровня.Коллективные средства защиты от ионизирующих излучений регламентируются ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортирования и хранения источников ионизирующих излучений, а также для сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении - рабочей камере, то экранами служат ее стены, пол и потолок, изготовленные из защитных материалов. Также экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты, поглощающие или ослабляющие излучение.

46. Что понимается под производственным шумом, его основные характеристики, классификация? Шум - всякий нежелательный звук, мешающий восприятию полезных сигналов (человеческой речи, сигналов и пр.), нарушающий тишину, неблагоприятно действующий на человека. Поэтому звуки, необходимые для проведения производственного процесса (например, сигналы от работающего оборудования, грузоподъемных кранов, транспорта и т.п.), либо звуки, не оказывающие на человека неблагоприятного влияния (морской прибой, шум листьев в саду, громкая музыка и т.п.) как шум не рассматриваются. Обычно шум является сочетанием звуков различной частоты и интенсивности. По характеру возникновения шум условно подразделяют на шум механического, аэродинамического и магнитного происхождения. Механический шум возникает в результате ударов в сочленяющихся частях машин, в зубчатых передачах, подшипниках качения и т.п. Аэродинамический шум появляется в результате пульсации давления в газах и жидкостях при их движении в трубопроводах и каналах, электромагнитный шум – является результатом растяжения и изгиба ферромагнитных материалов при воздействии на них переменных электромагнитных полей. Шум, особенно прерывистый, импульсный, ухудшает точность выполнения рабочих операций, затрудняет прием и восприятие информации, мышление. Шум нарушает сон и отдых людей. По частотной характеристике различают шумы низкочастотные до 350 Гц, среднечастотные 350- 800 Гц, высокочастотные – выше 800 Гц. По временным характеристикам шумы подразделяются на постоянные и непостоянные. Постоянным считается шум, уровень звука которого за 8-часовой рабочий день изменяется во времени не более чем на 5 дБА, непостоянным – более чем на 5 дБА.

47. Влияние шума на организм человека и способы защиты от неблагоприятного воздействия. Шум сокращает производительность ручного труда на 30 %, умственного - на 60 %.Основными мероприятиями по борьбе с шумом и защите от него – это технические мероприятия, которые проводятся в трех направлениях:устранение причин возникновения шума или снижение его в источнике;ослабление шума на путях передачи;непосредственная защита работающих.Защита работающих от шума может осуществляться как средствами и методами коллективной защиты, так и средствами индивидуальной защиты. В первую очередь необходимо использовать средства коллективной защиты, которые по отношению к источнику возбуждения шума подразделяется на средства, снижающие шум в источнике его возникновения, и средства, снижающие шум на пути его распространения от источника до защищаемого объекта.Наиболее эффективны мероприятия, ведущие к снижению шума в источнике его возникновения. Выбор средств снижения шума в источнике его возникновения зависит от происхождения шума. Снизить шум зубчатых передач можно повышением точности их обработки и сборки, заменой металлических шестерен на шестерни из других материалов, менее шумными являются конические, косозубые и шевронные шестерни и т.п. Шум подшипников может быть снижен путем тщательного их изготовления, плотной посадки на цапфы вала и в гнезда щитов, более совершенными смазками и присадками к ним, подшипники скольжения создают меньший шум, чем подшипники качения и т.п. Методы снижения шума на пути его распространения также разнообразны. Снижение шума на пути его распространения от источника в значительной степени достигается:акустическими средствами (звукоизоляция, звукопоглощение, глушители шума и т.п.);архитектурно-планировочными методами (рациональные акустические решения планировок зданий и генеральных планов объектов, рациональное размещение технологического оборудования, машин и механизмов, рациональное размещение рабочих мест, рациональное акустическое планирование зон и режимов движения транспортных средств и транспортных потоков, создание шумопоглощающих зон и т.п.).Значительный эффект в борьбе с шумом дают организационно-технические методы, которые включают:применение малошумных технологических процессов (изменение технологии производства, способа обработки и транспортирования материалов, сырья, полуфабрикатов и т.п.);оснащение шумных машин средствами дистанционного управления и автоматического контроля;применение малошумных машин, изменение конструктивных элементов машин, их сборочных единиц.

48. Что понимается под ультразвуком, характеристики, классификация? у льтразвук представляет собой механические колебания упругой среды, имеющие одинаковую со звуком физическую природу, но отличающие более высокой частотой, превышающей принятую верхнюю границу слышимости (свыше 20 кГц). Благодаря многим полезным и уникальным свойствам ультразвукполучил широкое применение на производстве, в медицине, в других отраслях деятельности. Поглощение ультразвука сопровождается нагреванием среды. Особенностью ультразвука является такое его свойство, которое позволяет создать на относительно небольшой площади очень большое ультразвуковое давление. Это свойство ультразвука обусловило его широкое применение для очистки деталей, механической обработки твердых материалов, жидких расплавов, сварки, пайки, ускорения химических реакций, дефектоскопии, проверки размеров выпускаемых изделий, структурного анализа веществ, гидролокации, а также в установках и системах очистки газов и др. Ультразвук подразделяется на: низкочастотный, распространяющиеся воздушным и контактным путем; высокочастотный, распространяющийся только контактным путем.

49. Влияние ультразвука на организм человека и способы защиты от неблагоприятного воздействия. Длительное влияние ультразвука на человека имеет пагубное действие и может вызывать расстройство нервной системы. При длительном и систематическом воздействии, начинается изменение сердечнососудистой и эндокринной систем. Что касается ощущения пространства, оно тоже может пострадать в ходе длительного влияния ультразвуковых волнПромышленные ультразвуковые установки работают в основном с частотами от (18-30) кГц при интенсивности (60–70) кВт/м2. Они состоят из генератора электрических импульсов и преобразователя, который трансформирует импульсы в ультразвуковые колебания. При обслуживании этих установок работающие могут подвергаться воздействию ультразвука, во-первых, при его распространении в воздухе (чаще всего вместе с шумом) и, во-вторых, при непосредственном соприкосновением с жидкими и твердыми телами, по которым распространяется ультразвук (контактное воздействие). Средства защиты от ультразвука также подразделяются на средства коллективной и индивидуальной защиты.Профилактические мероприятия при обслуживании ультразвукового технологического оборудования должны быть направлены на ограничение воздействия шума и ультразвуковых колебаний, распространяющихся в воздухе. Поскольку низкочастотные ультразвуки и высокочастотные звуки имеют одни и те же свойства, а закономерности их распространения очень близки, то и мероприятия по защите от них совпадают:уменьшение вредного излучения ультразвуковой энергии в источнике ее возникновения;локализация действия ультразвука конструктивными и планировочными решениями;звукоизоляция оборудования, применение звукопоглощающих и отражающих устройств;размещение ультразвукового оборудования в отдельных помещениях;организационно-практические мероприятия.

50. Влияние инфразвука на организм человека, способы защиты? Инфразвук как звуковые колебания малой частоты может сопровождаться практически всеми технологическими и природными процессами. Так инфразвук может быть генерирован при работе обычных станков или при возникновении землетрясений или искусственным путем, за счет электрогенераторов инфразвука. Это означает, что инфразвук сопровождается почти всеми технологическими процессами деятельности человека. Но такого рода воздействие не является полезным для человеческого организма, потому и нужно уметь защищаться от него. Гигиеническая проблема, связанная с воздействием инфразвука на организм человека, возникла сравнительно недавно – в 70-е годы. Неблагоприятное действие инфразвука на организм человека проявляется, прежде всего, в психических нарушениях, негативном влиянии на сердечнососудистую, дыхательную, эндокринную и другие системы организма, вестибулярный аппарат. Специфической для действия инфразвука реакцией является нарушение равновесия.Инфрашумы воспринимаются человеком, главным образом, как физическая нагрузка: возникает утомление, головная боль, головокружение. Инфразвук силой свыше 150 дБ совершенно непереносим человеком; при 180 – 190 дБ наступает смерть вследствие разрыва легочных альвеол.Вредное воздействие инфразвука на организм человека усугубляется при совпадении частоты инфразвуковых колебаний с собственной частотой того или иного органа. Резонансные частоты для человека находятся в диапазоне 4…15 Гц. Инфразвук частотой до 10 Гц вызывает резонансные явления со стороны крупных внутренних органов – желудка, печени, сердца, легких.При воздействии на человека повышенных уровней инфразвука наряду с указанными признаками наблюдается также затруднения дыхания, связанные, по-видимому, с вибрацией грудной клетки, с резонансными явлениями; тошнота вследствие раздражения рецепторов различных органов; расстройства терморегуляции, выражающиеся в возникновении озноба и ознобоподобного дрожания; нарушения зрительного восприятия; многообразные вегетативные реакции, вызванные нарушением функционирования гипоталамуса и другие. Для организации защиты от инфразвука необходимо использовать комплексный подход, включающий конструктивные меры снижения инфразвука в источнике образования, планировочные решения, организационные, медицинские меры профилактики и средства индивидуальной защиты.К основным мероприятиям по борьбе с инфразвуком относятся:Изоляция объектов, являющихся источниками инфразвука, выделение их в отдельные помещения.Использование кабин наблюдения с дистанционным управлением технологическим процессом.Повышение быстроходности машин, обеспечивающее перевод максимума излучения в область слышимых частот.Применение глушителей инфразвука с механическим преобразованием частоты волны.Устранение низкочастотных вибраций.Повышение жесткости конструкций больших размеров.Введение в технологические цепочки специальных демпфирующих устройств малых линейных размеров, перераспределяющих спектральный состав колебаний в область более высоких частот.Использование средств защиты органы слуха и головы от инфразвука – противошумов, наушников, гермошлемов и т.д. (заглушающая способность которых на низких частотах значительно ниже, чем на высоких). Для повышения эффективности защиты рекомендуется использовать комбинацию нескольких типов средств защиты, например, противошумные наушники и вкладыши.Применение рационального режима труда и отдыха – введение 20-минутных перерывов через каждые 2 часа работы при воздействии инфразвука с уровнями, превышающими нормативные.





Дата публикования: 2015-02-03; Прочитано: 312 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...