Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

ИММУНОЛОГИЯ 1 страница



1.Луи Пастер и его роль в развитии микробиологии. Разработка Пастером научных основ специфической профилактики инфекционных болезней.

Пастер сделал ряд выдающихся от­крытий. За короткий период с 1857 по 1885 г. он доказал, что брожение (молочнокислое, спиртовое, уксуснокислое) не явля­ется химическим процессом, а его вызывают микроорганизмы; опроверг теорию самозарождения; открыл явление анаэробио­за, т.е. возможность жизни микроорганизмов в отсутствие кис­лорода; заложил основы дезинфекции, асептики и антисепти­ки; открыл способ предохранения от инфекционных болезней с помощью вакцинации.

Многие открытия Л. Пастера принесли человечеству огром­ную практическую пользу. Путем прогревания (пастеризации) были побеждены болезни пива и вина, молочнокислых продук­тов, вызываемые микроорганизмами; для предупреждения гной­ных осложнений ран введена антисептика; на основе принципов Л. Пастера разработаны многие вакцины для борьбы с инфекционными болезнями.

Однако значение трудов Л. Пастера выходит далеко за рамки только этих практических достижений. Л. Пастер вывел микро­биологию и иммунологию на принципиально новые позиции, показал роль микроорганизмов в жизни людей, экономике, про­мышленности, инфекционной патологии, заложил принципы, по которым развиваются микробиология и иммунология и в наше время.

Л. Пастер был, кроме того, выдающимся учителем и органи­затором науки.

Работы Л. Пастера по вакцинации открыли новый этап в раз­витии микробиологии, по праву получивший название имму­нологического.

Принцип аттенуации (ослабления) микроорганизмов с помо­щью пассажей через восприимчивое животное или при выдерживании микроорганизмов в неблагоприятных условиях (темпе­ратура, высушивание) позволил Л. Пастеру получить вакцины против бешенства, сибирской язвы, куриной холеры; этот прин­цип до настоящего времени используется при приготовлении вакцин. Следовательно, Л. Пастер является основоположником научной иммунологии, хотя и до него был известен метод пре­дупреждения оспы путем заражения людей коровьей оспой, разработанный английским врачом Э. Дженнером. Однако этот метод не был распространен на профилактику других болезней.

Роберт Кох. Физиологический период в развитии микробиологии связан также с именем немецкого ученого Роберта Коха, которому при­надлежит разработка методов получения чистых культур бактерий, окраски бактерий при микроскопии, микрофотографии. Известна также сформулированная Р. Кохом триада Коха, которой до сих пор пользуются при установлении возбудителя болезни.

2. Виды иммунитета. Приобретенный иммунитет, пассивный и активный иммунитет. Нейро-гуморальные механизмы регуляции продукции антител (гипоталамо-гипофизо-адренокортикальная система).

Существуют две основные формы противоинфекционного иммунитета. Первая — видовой, или врожденный (наследственный), или неспецифический, иммунитет. Вторая — приобретенный, или специфический, иммунитет.

Приобретенный иммунитет отличается от видового следующими особенностями.

-Во-первых, он не передается по наследству. По наследству передается лишь ин­формация об органе иммунитета, а сам иммунитет формируется в процессе индиви­дуальной жизни в результате взаимодействия с соответствующими возбудителями или их антигенами.

-Во-вторых, приобретенный иммунитет является строго специфическим, т. е. все­гда направлен против конкретного возбудителя или антигена.

Форми­рование приобретенного специфического иммунитета происходит благодаря коопера­тивному взаимодействию макрофагов (и других антигенпредставляющих клеток), В- и Т-лимфоцитов и при активном участии всех остальных иммунных систем.

-Активно приобретенный иммунитет, особенно постинфекционный, устанавлива­ется спустя некоторое время после заболевания или прививки (1—2 нед.), сохраня­ется долго — годами, десятилетиями, иногда пожизненно (корь, оспа, туляремия).

-Пассивный иммунитет создается очень быстро, сразу после введения иммунной сы­воротки, но зато сохраняется очень недолго (несколько недель) и снижается по ме­ре исчезновения введенных в организм антител.

Существуют по крайней мере три системы регуляции продукции антител, или, в более широком плане, силы иммунного ответа. Одна из них действует на генетиче­ском уровне, другая — на нейрогуморальном. Не исключено, что вторая подчинена первой. Давно было замечено, что введение одного и того же антигена индуцирует у разных индивидуумов данного вида появление различного количества антител: от нуля до высокого уровня.

Вместе с тем продукция антител регулируется и симпатико-адреналовой систе­мой. Показано, что генерализованное возбуждение медиальных зон гипоталамуса ведет к резкому усилению продукции антител. Такой же эффект вызывает гормон роста, образуемый гипофизом.

Третья система регуляции содержания антител связана с идиотип-антиидиотипическими отношениями.

3. Видовой иммунитет (резистентность). Физиологические механизмы, лежащие в основе видовой резистентности. Гуморальные факторы видового иммунитета - комплемент, его свойства, природа, состав; пропердин.

Под видовым иммунитетом понимают невосприимчивость, обусловленную врожденными биологическими особенностями, присущими данному виду животных или человеку. В основе видового иммунитета лежат различные механизмы естественной неспецифической резистентности. Характерными особенностями ее являются наслед­ственная передача и отсутствие специфичности. Неспецифическая видовая резистентность обусловлена целым рядом анатомо- физиологических механизмов. Схематически их можно разделить на следующие группы факторов: защитная роль кожных и слизистых покровов; нормальная мик­рофлора макроорганизма; воспаление; лихорадка; барьерная функция лимфатичес­ких узлов; гуморальные антимикробные вещества, содержащиеся в тканях и жидко­стях организма; функции выделительной системы; фагоцитоз и др.

Природа и характеристика комплемента. Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена.

1. Девять белков, составляющих собственно комплемент и обозначаемых поэто­му буквой С: С1...С9, причем С1-компонент состоит из трех белковых субъединиц (С1q, С1г, С1s), все остальные представляют собой единичные белковые молекулы. В составе молекулы имеется рецептор для связывания с Рс-фрагментом молеку­лы антитела. Антитела, относящиеся к иммуноглобулинам различных классов, вза­имодействуют с комплементами с различной степенью активности. Белки С5, С6, С7, С8 и С9 участвуют в организации мембрано-атакующего комплекса.

2. Регуляторные белки: С1Е1, С4bр, фактор Н, фактор I (инактиватор СЗb/С4b), белок S.

3. Факторы, участвующие в альтернативном пути активации системы комплемента: фактор В (протеиназа), фактор В (гликопротеин), фактор Р (пропердин) — у-глобулин, его обнаружил в 1954 г. Л. Пиллемер. Этот белок, образуя комплекс с эндоток­сином, в присутствии ионов Mg разрушает С3, поэтому был назван пропердином. Пропердин стабилизирует СЗ-конвертазу альтернативного пути.

4. Комплемент, состав, основные свойства. Пути активации. Участие комплемента в реакциях иммунитета. РСК, методика ее постановки и практическое использование.

Комплемент является одним из важных фак­торов гуморального иммунитета, играющим роль в защите организма от антигенов. Комплемент представляет со­бой сложный комплекс белков сыворотки крови, находящийся обычно в неактивном состоянии и активирующийся при соедине­нии антигена с антителом или при агрега­ции антигена.

Состав:

1. Девять белков, составляющих собственно комплемент и обозначаемых поэто­му буквой С: С1...С9, причем С1-компонент состоит из трех белковых субъединиц (С1q, С1г, С1s), все остальные представляют собой единичные белковые молекулы. В составе молекулы имеется рецептор для связывания с Рс-фрагментом молеку­лы антитела. Антитела, относящиеся к иммуноглобулинам различных классов, вза­имодействуют с комплементами с различной степенью активности. Белки С5, С6, С7, С8 и С9 участвуют в организации мембрано-атакующего комплекса.

2. Регуляторные белки: С1Е1, С4bр, фактор Н, фактор I (инактиватор СЗb/С4b), белок S.

3. Факторы, участвующие в альтернативном пути активации системы комплемента: фактор В (протеиназа), фактор В (гликопротеин), фактор Р (пропердин) — у-глобулин, его обнаружил в 1954 г. Л. Пиллемер. Этот белок, образуя комплекс с эндоток­сином, в присутствии ионов Mg разрушает С3, поэтому был назван пропердином. Пропердин стабилизирует СЗ-конвертазу альтернативного пути.

Функции комплемента многообразны: а) участвует в лизисе микробных и других клеток (цитотоксическое действие); б) обладает хемотаксической активностью; в) принимает учас­тие в анафилаксии; г) участвует в фагоцитозе. Следовательно, комплемент является компонен­том многих иммунологических реакций, направ­ленных на освобождение организма от микробов и других чужеродных клеток и антигенов (на­пример, опухолевых клеток, трансплантата).

Механизм активации комплемента представляет собой каскад фер­ментативных протеолитических реакций, в результате которого образуется активный цитолитический комплекс, разрушающий стен­ку бактерии и других клеток. Известны три пути активации комплемента: классический, альтернативный и лектиновый.

По классическому пути комплемент активирует­ся комплексом антиген-антитело. Для этого достаточно участия в связывании антигена одной молекулы IgM или двух молекул IgG. Процесс начинается с присоединения к ком­плексу АГ+АТ компонента С1, который рас­падается на субъединицы Clq, Clr и Сls. Далее в реакции участвуют последовательно активированные «ранние» компоненты комплемента в такой последовательности: С4, С2, СЗ. Эта реакция имеет характер усиливающе­гося каскада, т. е. когда одна молекула пре­дыдущего компонента активирует несколько молекул последующего. «Ранний» компонент комплемента С3 активирует компонент С5, который обладает свойством прикрепляться к мембране клетки. На компоненте С5 путем последовательного присоединения «поздних» компонентов С6, С7, С8, С9 образуется литический или мембраноатакующий комплекс который нарушает целостность мембраны (образует в ней отверстие), и клетка погибает в результате осмотического лизиса.

Альтернативный путь активации комплемен­та проходит без участия антител. Этот путь характерен для защиты от грамотрицательных микробов. Каскадная цепная реакция при аль­тернативном пути начинается с взаимодействия антигена (например, полисахарида) с протеи­нами В, D и пропердином (Р) с последующей активацией компонента СЗ. Далее реакция идет так же, как и при классическом пути — образу­ется мембраноатакующий комплекс.

Лектиновыи путь активации комплемента также происходит без участия антител. Он ини­циируется особым маннозосвязывающим белком сыворотки крови, который после взаимодейс­твия с остатками маннозы на поверхности мик­робных клеток катализирует С4. Дальнейший каскад реакций сходен с классическим путем.

В процессе активации комплемента обра­зуются продукты протеолиза его компонен­тов — субъединицы СЗа и СЗb, С5а и С5b и дру­гие, которые обладают высокой биологической активностью. Например, СЗа и С5а принимают участие в анафилактических реакциях, являют­ся хемоаттрактантами, СЗb — играет роль в опсонизации объектов фагоцитоза, и т. д. Сложная каскадная реакция комплемента происходит с участием ионов Са2+ и Mg2+.

Реакция связывания комплемента.

Уникальная способность комплемента специфически связываться с различными по своей природе комплексами антиген + антитело нашла широкое применение в реакции связывания комплемента (РСК). Особое преимущество РСК состоит в том, что природа антигена, участвующего в ней (корпускулярный или раствори­мый), не имеет значения, так как комплемент связывается с Fс-фрагментом лю­бого антитела, относящегося к IgG и IgМ, независимо от его антительной специ­фичности. Кроме того, РСК очень чувствительна: она позволяет обнаружить количество антител в 10 раз меньшее, чем, например, в реакции преципитации. РСК была предложена в 1901 г. Ж. Борде и О. Жангу. В ее основе лежат два свой­ства комплемента:

1) способность связываться с комплексом антиген + антитело;

2) лизирование эритроцитов, использованных для получения гемолитической сыворотки.

РСК ставят в два этапа, и в ней соответственно участвуют две системы — опыт­ная, или диагностическая, и индикаторная. Диагностическая система состоит из исследуемой (или диагностической) сыворотки, которую перед постановкой реак­ции прогревают при 56 °С в течение 30 мин для инактивации имеющегося в ней комплемента, и антигена. К этой системе добавляют стандартный комплемент. Его источником служит свежая или высушенная сыворотка морской свинки. Смесь ин­кубируют при 37 "С в течение одного часа. Если в исследуемой сыворотке имеют­ся антитела, произойдет их взаимодействие с добавленным антигеном, и образую­щиеся комплексы антиген + антитело свяжут добавленный комплемент. Если же в сыворотке антитела отсутствуют, образования комплекса антиген + антитело не произойдет, и комплемент останется свободным. Никаких видимых проявлений связывания комплемента на этой стадии реакции обычно нет. Поэтому для выяс­нения вопроса, произошло или нет связывание комплемента, добавляют вторую, индикаторную систему (инактивированная гемолитическая сыворотка + эритроци­ты барана), и смесь всех компонентов РСК вновь инкубируют при 37С в течение 30—60 мин, после чего оценивают результаты реакции. В случае, если комплемент связался на первой стадии, в диагностической системе, т. е. в сыворотке больного имеются антитела, и произошло связывание комплемента комплексом антитело + + антиген, лизиса эритроцитов не будет — РСК положительна: жидкость бесцветна, на дне пробирки осадок эритроцитов. Если же в сыворотке специфические антите­ла отсутствуют и связывания комплемента в диагностической системе не произой­дет, т. е. РСК отрицательна, то неизрасходованный в диагностической системе Комплемент связывается с комплексом эритроциты + антитела индикаторной системы и произойдет гемолиз: в пробирке «лаковая кровь», осадка эритроцитов нет. Интенсивность РСК оценивают по четырехкрестной системе в зависимости от степени задержки гемолиза и наличия осадка эритроцитов. Реакция сопровожда­ется соответствующими контролями: контроль сыворотки (без антигена) и конт­роль антигена (без сыворотки), так как некоторые сыворотки и некоторые антигены обладают антикомплементарным действием. Перед постановкой РСК все компо­ненты, участвующие в ней, за исключением исследуемой сыворотки или антигена, подвергаются тщательному титрованию. Особенно важно ввести в реакцию точ­ную дозу комплемента, так как его нехватка или избыток могут привести к лож­ным результатам. Титром комплемента является то его минимальное количество, которое в присутствии рабочей дозы гемолитической сыворотки обеспечивает полное растворение эритроцитов. Для постановки основного опыта берут дозу комплемента, увеличенную на 20—25 % по сравнению с установленным титром. Титром гемолитической сыворотки является то ее максимальное разведение, кото­рое, будучи смешано с равным объемом 10 % раствора комплемента, полностью гемолизирует соответствующую дозу эритроцитов в течение 1 ч при температуре 37 °С. В основной опыт берут сыворотку, разведенную до 1/3 своего титра.

Непрямая реакция гемолиза используется как ускоренный метод обнаруже­ния специфических антител. В качестве носителя антигенов используют эритроциты. При наличии в сыворотке больного специфических антител сенсибилизированные эритроциты в присутствии комплемента лизируются.

5. Приобретенный иммунитет. Значение антител в формировании иммунитета. Роль различных классов иммуноглобулинов в иммунологических реакциях (агглютинации, РСК, нейтрализации токсинов и вирусов, развитии местного иммунитет).

Приобретенный иммунитет отличается от видового следующими особенностями.

-Во-первых, он не передается по наследству. По наследству передается лишь ин­формация об органе иммунитета, а сам иммунитет формируется в процессе индиви­дуальной жизни в результате взаимодействия с соответствующими возбудителями или их антигенами.

-Во-вторых, приобретенный иммунитет является строго специфическим, т. е. все­гда направлен против конкретного возбудителя или антигена.

Форми­рование приобретенного специфического иммунитета происходит благодаря коопера­тивному взаимодействию макрофагов (и других антигенпредставляющих клеток), В- и Т-лимфоцитов и при активном участии всех остальных иммунных систем.

Одним из характерных признаков приобретенного иммунитета служит появление в сыворотке крови и тканевых соках специфических защитных веществ — антител, направленных против чужеродных веществ.

Антитела являются уникальными сывороточными белками — глобулинами, ко­торые вырабатываются в ответ на поступление в организм антигена и способны с ним специфически взаимодействовать. Совокупность сывороточ­ных белков, обладающих свойствами антител, называют иммуноглобулинами и обозначают символом Ig.

Существует пять различных классов иммуногло­булинов: IgG, IgМ, IgА, IgЕ, IgD Они различаются по молекулярной массе, содержа­нию углеводов, составу полипептидных цепей, коэффициентам седиментации и др.

Высокая нейтрализующая активность антител, принадлежащих к IgG, свидетель­ствует о важной роли их в антитоксическом иммунитете. Антитела IgМ особенно активны в реакциях фагоцитоза с корпускулярными антигенами и поэтому играют существенную роль в антимикробном иммунитете, В реакциях нейтрализации виру­сов особенно активны антитела IgА, следовательно, им принадлежит большая роль в противовирусном иммунитете. Кроме того, секреторные IgAs обусловливают мест­ный иммунитет слизистых оболочек. Наконец, антитела IgЕ, обладающие гомоцитотропностью, опосредуют реакции гиперчувствительности немедленного типа.

Реакция связывания комплемента.

Уникальная способность комплемента специфически связываться с различными по своей природе комплексами антиген + антитело нашла широкое применение в реакции связывания комплемента (РСК). Особое преимущество РСК состоит в том, что природа антигена, участвующего в ней (корпускулярный или раствори­мый), не имеет значения, так как комплемент связывается с Fс-фрагментом лю­бого антитела, относящегося к IgG и IgМ, независимо от его антительной специ­фичности. Кроме того, РСК очень чувствительна: она позволяет обнаружить количество антител в 10 раз меньшее, чем, например, в реакции преципитации. РСК была предложена в 1901 г. Ж. Борде и О. Жангу. В ее основе лежат два свой­ства комплемента:

3) способность связываться с комплексом антиген + антитело;

4) лизирование эритроцитов, использованных для получения гемолитической сыворотки.

РСК ставят в два этапа, и в ней соответственно участвуют две системы — опыт­ная, или диагностическая, и индикаторная. Диагностическая система состоит из исследуемой (или диагностической) сыворотки, которую перед постановкой реак­ции прогревают при 56 °С в течение 30 мин для инактивации имеющегося в ней комплемента, и антигена. К этой системе добавляют стандартный комплемент. Его источником служит свежая или высушенная сыворотка морской свинки. Смесь ин­кубируют при 37С в течение одного часа. Если в исследуемой сыворотке имеют­ся антитела, произойдет их взаимодействие с добавленным антигеном, и образую­щиеся комплексы антиген + антитело свяжут добавленный комплемент. Если же в сыворотке антитела отсутствуют, образования комплекса антиген + антитело не произойдет, и комплемент останется свободным. Никаких видимых проявлений связывания комплемента на этой стадии реакции обычно нет. Поэтому для выяс­нения вопроса, произошло или нет связывание комплемента, добавляют вторую, индикаторную систему (инактивированная гемолитическая сыворотка + эритроци­ты барана), и смесь всех компонентов РСК вновь инкубируют при 37С в течение 30—60 мин, после чего оценивают результаты реакции. В случае, если комплемент связался на первой стадии, в диагностической системе, т. е. в сыворотке больного имеются антитела, и произошло связывание комплемента комплексом антитело + + антиген, лизиса эритроцитов не будет — РСК положительна: жидкость бесцветна, на дне пробирки осадок эритроцитов. Если же в сыворотке специфические антите­ла отсутствуют и связывания комплемента в диагностической системе не произой­дет, т. е. РСК отрицательна, то неизрасходованный в диагностической системе Комплемент связывается с комплексом эритроциты + антитела индикаторной системы и произойдет гемолиз: в пробирке «лаковая кровь», осадка эритроцитов нет. Интенсивность РСК оценивают по четырехкрестной системе в зависимости от степени задержки гемолиза и наличия осадка эритроцитов. Реакция сопровожда­ется соответствующими контролями: контроль сыворотки (без антигена) и конт­роль антигена (без сыворотки), так как некоторые сыворотки и некоторые антигены обладают антикомплементарным действием. Перед постановкой РСК все компо­ненты, участвующие в ней, за исключением исследуемой сыворотки или антигена, подвергаются тщательному титрованию. Особенно важно ввести в реакцию точ­ную дозу комплемента, так как его нехватка или избыток могут привести к лож­ным результатам. Титром комплемента является то его минимальное количество, которое в присутствии рабочей дозы гемолитической сыворотки обеспечивает полное растворение эритроцитов. Для постановки основного опыта берут дозу комплемента, увеличенную на 20—25 % по сравнению с установленным титром. Титром гемолитической сыворотки является то ее максимальное разведение, кото­рое, будучи смешано с равным объемом 10 % раствора комплемента, полностью гемолизирует соответствующую дозу эритроцитов в течение 1 ч при температуре 37 °С. В основной опыт берут сыворотку, разведенную до 1/3 своего титра.

Непрямая реакция гемолиза используется как ускоренный метод обнаруже­ния специфических антител. В качестве носителя антигенов используют эритроциты. При наличии в сыворотке больного специфических антител сенсибилизированные эритроциты в присутствии комплемента лизируются.

6. Антигены. Определение понятия, свойства, химическая природа. Специфичное антигенов. Детерминантная группа (эпитоп), шлеппер. Полноценные и неполноценные антигены. Гаптены и полугаптены. Факторы, определяющие антигенность белка и ее специфичность.

Антигены — любые вещества, содержащиеся в микроорганизмах и других клетках или выделяемые ими, которые несут признаки генетически чуже­родной информации и при введении в организм вызывают развитие специфи­ческих иммунных реакций.

Реализация антигенности зависит от способности антиге­на метаболизироваться в организме, т. е. быть объектом разрушающего действия макрофагов и взаимодействовать с другими клетками иммунной системы. Благода­ря такому взаимодействию происходит распознавание антигенной специфичности. Все антигены обладают специфичностью, т. е. определенными особенностями, гене­тически детерминированными и связанными с их структурой, почему они и отлича­ются друг от друга.

Для характеристики микроорганизмов помимо родовой, видовой и групповой антигенной специфичности очень важное значение имеет определение типоспецифичности антигенов. Типоспецифичность — особенность антигенного строения, которая обусловливает различия среди особей одной группы сходных организмов данного вида и позволяет выделить среди них серотипы, или сероварианты (серовары). Выявление сероваров дает возможность осуществлять очень тонкую дифферен­циацию внутри вида микроорганизмов.

Большинство современных классификаций патогенных микроорганизмов по­строены с учетом этих типов антигенной специфичности.

Изучение антигенных свойств различных сложных химических соединений — белков, полисахаридов, липидов, нуклеиновых кислот и т. д. — показало, что суще­ствует два типа антигенов — полноценные и неполноценные.

-Полноценные антигены обладают обеими функциями антигена: способностью индуцировать образование антител и специфически с ними взаимодействовать.

-Неполноценные антигены сами по себе способностью индуцировать образование антител не обладают, они приоб­ретают это свойство только после соединения с белками или другими полноценными антигенами. Такие неполноценные антигены называются гаптенами или полугаптенами.

Неполноценные антигены обладают только од­ним свойством антигена: они способны специфически взаимодействовать с теми антителами, в индукции синтеза которых они участвовали (после присоединения к белку и превращения в полноценные антигены).

Если взаимодействие неполноценного антигена с антителом сопровождается обычными иммунологическими реакциями, его называют гаптеном. Если неполно­ценный антиген имеет очень небольшую молекулярную массу и его взаимодействие с антителами не сопровождается обычными видимыми реакциями, его называют полугаптеном. О присутствии полугаптена в этом случае судят по тому признаку, что антитела, будучи связаны с полугаптеном, уже не проявляют себя в обычной реак­ции с полноценным антигеном (задерживающая реакция Ландштейнера).

7. Антигенное строение микробной клетки. Основные группы антигенов. Химическая природа антигенной специфичности. Значение изучения антигенов в серологической классификации микроорганизмов.

Антигенное строение микробной клетки. Обладая слож­ным химическим строением, бактериальная клетка представляет собой целый ком­плекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплаз­мы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты. В связи с этим различают следу­ющие основные виды микробных антигенов: соматические, или О - антигены; жгути­ковые, или Н-антигены; поверхностные, или капсульные К-антигены.

Для медицинской микробиологии наибольший интерес представляют антиген­ные свойства бактерий, токсинов и вирусов. Результаты их изучения используются в практике получения высокоэффективных иммуногенных препаратов, а также для совершенствования методов идентификации возбудителей болезней.

8. Антигенное строение микробной клетки. Н-, О- и К-антигены, токсины и ферменты бактерий как антигены. Перекрестнореагирующие антигены. Принципы определения антигенного состава бактерий, дифференциация общих (групповых) типоспецифических антигенов.

Антигенное строение микробной клетки. Обладая слож­ным химическим строением, бактериальная клетка представляет собой целый ком­плекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплаз­мы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты. В связи с этим различают следу­ющие основные виды микробных антигенов: соматические, или О - антигены; жгути­ковые, или Н-антигены; поверхностные, или капсульные К-антигены.

Видовая специфичность — антигенные особенности, присущие представите­лям данного вида. Отпечаток видовой специфичности имеют многие макромолекулы данного организма. Определение видовых антигенов может быть использовано для дифференциации особей одного вида от другого.

Групповая специфичность — особенности антигенного строения, свойствен­ные определенной группе особей внутри данного вида организмов. Групповые анти­гены, позволяющие различать отдельных особей или группы особей внутри одного вида, называются изоантигенами.

Гетероспецифичность — антигенная специфичность, обусловленная наличием общих для представителей разных видов антигенов. Гетероантигены обусловливают перекрестные иммунологические реакции.

Типоспецифичность — особенность антигенного строения, которая обусловливает различия среди особей одной группы сходных организмов данного вида и позволяет выделить среди них серотипы, или сероварианты (серова- ры). Выявление сероваров дает возможность осуществлять очень тонкую дифферен­циацию внутри вида микроорганизмов.

Большинство современных классификаций патогенных микроорганизмов по­строены с учетом этих типов антигенной специфичности.

9. Иммунные сыворотки, их назначение, способы получения. Приготовление диагностических агглютинирующих сывороток и их практическое применение.

--В диагностике инфекционных болезней широко применя­ются иммунные реакции при идентификации возбудителя: при установлении родовой, видовой и типовой принадлежности микроба (вируса). Для постановки таких реакций необходимы специфические диагностические сыворотки, которые в зависи­мости от содержания соответствующих антител называются агглютинирующие, преципитирующие, гемо­литические, противовирусные.

--Иммунные сыворотки получают путем гипе­риммунизации животных (ло­шади) специфическим антигеном (анатоксином, бактериальными или вирусными культурами и их антигенами) с пос­ледующим, в период максимального антителообразования, выделением из крови иммунной сыворотки. Иммунные сы­воротки, полученные от животных, называют гетерогенными, так как они содержат чужерод­ные для человека сывороточные белки.

Для получения гомологичных нечужеродных иммунных сывороток используют сы­воротки переболевших людей (коревая, оспенная сыворотки) или специ­ально иммунизированных людей-доноров (противостолбнячная, противоботулиническая), содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакци­нации или перенесенного заболевания.





Дата публикования: 2015-02-03; Прочитано: 291 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...