Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Генетика микроорганизмов



1. Ядерный аппарат у бактерий и его особенности. Механизм репликаиии бактериальной хромосомы.

Генетическая система бактерий имеет по крайней мере четыре особенности, при­сущие только этим организмам.

1. Хромосомы бактерий (и соответственно плазмид) располагаются свободно в цитоплазме, не отграничены от нее никакими мембранами, но связаны с опреде­ленными рецепторами на цитоплазматической мембране. Поскольку длина хромо­сомы (у Е. соli около 1,6 мм) во много раз превышает длину бактериальной клетки (1,5—3,0 мкм в среднем), хромосома особым компактным образом в ней упакована: молекула хромосомной ДНК находится в суперспирализованной форме и свернута в виде петель, число которых составляет 12—80 на хромосому. Петли в центре нуклеоида объединяются за счет связывания ДНК с сердцевинной структурой, пред­ставленной молекулами особого класса РНК — 4,55 РНК. Такая упорядоченная упа­ковка обеспечивает постоянную транскрипцию отдельных оперонов хромосомы и не препятствует ее репликации. Возможно, что петли упакованной хромосомы способствуют компартментализации рибосом.

2. Хотя бактерии являются гаплоидными организмами, т. е. имеют один набор ге­нов, содержание ДНК у них непостоянно, оно может при благоприятных условиях достигать значений, эквивалентных по массе 2, 4, 6 и даже 8 хромосомам. У всех прочих живых существ содержание ДНК постоянное, и оно удваивается (кроме ви­русов и плазмид) перед делением.

3. У бактерий в естественных условиях передача генетической информации проис­ходит не только по вертикали, т. е. от родительской клетки дочерним, но и по горизон­тали с помощью различных механизмов: конъюгации, сексдукции, трансдукции, трансформации.

4. У бактерий очень часто помимо хромосомного генома имеется дополнительный плазмидный геном, наделяющий их важными биологическими свойствами, неред­ко — специфическим (приобретенным) иммунитетом к различным антибиотикам и другим химиопрепаратам.

Содержание ДНК у бактерий зависит от условий их роста: при благоприятных условиях оно возрастает до величин, соответствующих массе нескольких хромо­сом. Это уникальное свойство бактериального генома. Биологическое значение его состоит в том, что, регулируя содержание копий своих генов (а оно будет опре деляться количеством копий синтезируемых хромосом), бактерии одновременно приспосабливают скорость своего размножения к условиям роста. Наряду с увели­чением содержания ДНК у бактерий в этом случае существенно возрастает и коли­чество рибосом. Благодаря этому создаются необходимые условия для транскрип­ции и трансляции (а у бактерий они происходят одновременно) нескольких копий генов одновременно, возрастает суммарная скорость биосинтеза всех субклеточ­ных и клеточных структур и соответственно скорость размножения бактерий. Время клеточного цикла бактерий сокращается от нескольких часов до 20—30 мин. Скорость размножения определяет возможность накопления в окружающей среде большого запаса клеток данного вида. Это и является причиной существования бактерий в природе многие миллионы лет. Возможность регулировать ско­рость собственного размножения — одно из главных условий, обеспечивающих выживание бактерий в окружающей среде, а следовательно, и сохране­ние вида в природе.

Репликация ДНК у бактерий начинается со строго фиксированного сайта хромосомы — оriС. Он включает в себя участки с так назы­ваемыми ДНК-боксами и расположенными между ними короткими последова­тельностями. Оба элемента примыкают к гену dnaА. Это и служит сигналом для действия ДНК-хеликазы. Репликация имеет полуконсервативный характер, идет одновременно в двух направлениях и заканчивается также в строго фиксиро­ванной точке - terminus. Поскольку цепи ДНК антипараллельны (если одна нить начинается с 5'-конца, другая — с З'-конца), а ДНК-полимераза III осуществляет синтез ДНК только в направлении 5'>3', репликация происходит своеобразно: на одной из расплетенных нитей — «прямой», или лидерной, или веду­щей, — она идет непрерывно, а на другой — отстающей — ДНК-полимераза III долж­на возвращаться, чтобы наращивать нить тоже в направлении 5'>3', прерывисто, че­рез образование сегментов Оказаки, длиной у бактерий около 1000 нуклеотидов (у эукариот - около 200—300 нуклеотидов).

2. Бактериальная хромосома, ее упаковка в клетке. Формы обмена генетическим материалом у бактерий: конъюгация, трансформация, трансдукция, трансфекция и сексдукция.

Бактериальная хромосома представлена одной двухцепочечной молекулой ДНК кольцевой фор­мы. Размеры бактериальной хромосомы у различ­ных представителей царства Procaryotae варьируют. Бактериальная хромосома формиру­ет компактный нуклеоид бактериальной клетки. Бактериальная хромосома имеет гаплоидный на­бор генов. Она кодирует жизненно важные для бактериальной клетки функции.

Плазмиды бактерий представляют собой двухцепочечные молекулы ДНК. Они кодируют не основные для жизнедеятельности бактериальной клетки функции, но придающие бактерии преиму­щества при попадании в неблагоприятные условия существования.

Помимо основного механизма передачи генов — по наследству (по вертикали), у бактерий существуют следующие формы обмена генетическим материалом по го­ризонтали, т. е. между отдельными особями в популяции клеток: трансформация, трансфекция, трансдукция, конъюгация и сексдукция.

1.Трансформация — перенос генетического материала, заключающийся в том, что бактерия-реципиент захватывает (поглощает) из внешней среды фрагменты чу­жеродной ДНК. Трансформация может быть спонтанной или индуцированной. Ин­дуцированная (искусственно получаемая) трансформация происходит при добавле­нии к культуре бактерий очищенной ДНК, полученной из культур тех бактерий, генетические признаки которых стремятся передать исследуемой культуре. Спон­танная трансформация происходит в естественных условиях и проявляется в воз­никновении рекомбинантов при смешивании генетически различающихся клеток. Она протекает за счет ДНК, выделяющейся клетками в окружающую среду вслед­ствие их лизиса или в результате активного выделения ДНК жизнеспособными клет­ками-донорами. Как спонтанная, так и индуцированная трансформация сводится, по сути, к поглощению трансформирующей ДНК и образованию рекомбинантов, причем спонтанная трансформация может происходить в результате взаимного об­мена ДНК. Эффективность индуцируемой трансформации во многом зависит от фи­зиологического состояния клеток-реципиентов. Они должны находиться в состоя­нии своеобразной компетентности для этого процесса. Предполагается, что в фазе компетентности происходят значительные изменения поверхностных слоев клетки, которые способствуют поглощению ДНК. В частности, аутолитические ферменты клетки растворяют клеточную стенку в тех участках, где происходит ее синтез. При этом мезосомы через образовавшиеся отверстия соприкасаются с внешней средой, адсорбируют и втягивают внутрь клетки трансформирующую ДНК, где она и всту­пает в рекомбинацию с ДНК реципиента. В результате этого образуется мерозигота, клетка делится, и ее потомки наследуют признаки, полученные от донора и реципи­ента. Однако в других случаях поглощенные фрагменты ДНК разрушаются нуклеазами клетки-реципиента, и трансформации не происходит. Ее эффективность зависит также от размеров трансформирующей ДНК: высокомолекулярная ДНК поглощается труднее, чем менее крупные ее фрагменты. Способность к трансформации обнару­жена у ряда родов бактерий, но, по-видимому, роль ее в обмене генетическим мате­риалом среди бактерий в естественных условиях менее существенна, чем роль других механизмов. Дело в том, что у многих бактерий имеются особые системы рестрик­ции и модификации. Эти системы модифицируют свою ДНК (чаще всего путем ее метилирования) и разрушают чужеродную ДНК, если она подобным образом не мо­дифицирована, с помощью особых ферментов — рестрикционных эндонуклеаз.

Эффективность метода генетической трансформации во много раз повышается в том случае, если смесь ДНК и трансформируемых клеток с помощью специаль­ного прибора подвергнуть обработке электрическим импульсом. Метод электро­трансформации является универсальным, он применим к любым видам бактерий. С помощью этого метода осуществлена трансформация более 100 видов бактерий, и он может стать важным инструментом получения ценных рекомбинантных штам­мов бактерий.

2.Трансфекция — вариант трансформации бактериальных клеток, лишенных клеточной стенки, осуществляемый вирусной (фаговой) нуклеиновой кислотой. С помощью трансфекции удается вызвать у таких бактерий (без клеточной стенки) вирусную инфекцию. Трансфекцию можно осуществить и с другими (не бактери­альными) клетками, если ввести в них чужеродную ДНК, способную рекомбинировать с ДНК этих клеток, или воспроизводить вирионы, или самостоятельно реплицироваться.

3.Трансдукция — перенос генетического материала от клетки-донора клетке-ре­ципиенту с помощью бактериофагов. Различают трансдукцию неспецифическую и специфическую.

Неспецифическая трансдукция — случайный перенос фрагментов ДНК от одной бактериальной клетки к другой.

Специфическая трансдукция осуществляется только умеренными фагами, обла­дающими способностью включаться в строго определенные участки хромосомы бактериальной клетки и трансдуцировать определенные гены.

4.Конъюгация — это процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и ре­ципиента. Процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном. Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление по­верхностного исключения. Аппаратом переноса являются специальные донорные ворсинки, с помощью которых устанавливается контакт между конъюгирующими клетками.

5.Сексдукция — перенос генетического материала между бактериальными клет­ками, осуществляемый F-плазмидой с помощью механизма, аналогичного специ­фической транcдукции.

3. Конъюгативный механизм обмена генетическим материалом у бактерий. F-плазмиды, их роль, функции tra-оперона.

Конъюгация — это процесс обмена генетическим материалом (хромосомным и плазмидным), осуществляемый при непосредственном контакте клеток донора и ре­ципиента. Процесс контролируется только конъюгативными плазмидами, имеющими совокупность генов, называемую tra-опероном. Этот оперон контролирует синтез аппарата переноса, конъюгативную репликацию и явление по­верхностного исключения. Аппаратом переноса являются специальные донорные ворсинки, с помощью которых устанавливается контакт между конъюгирующими клетками. Донорные ворсинки представляют собой длинные (1—20 мкм) тонкие труб­чатые структуры белковой природы с внутренним диаметром около 3 нм. Число до­норных пилей у каждой F-клетки невелико и, очевидно, соответствует числу копий конъюгативной плазмиды в клетке. Донорные ворсинки обнаруживают с помощью донорспецифических фагов, которые, адсорбируясь на них, проникают в клетку и вы­зывают ее лизис. Для каждой группы конъюгативных плазмид существуют свои до- норспецифические фаги. Ворсинки выполняют следующие функции: 1) с их помощью устанавливается контакт между донорной и реципиентной клетками; 2) они облегча­ют перенос нити ДНК (она, вероятно, протаскивается через ворсинку); 3) стягивают спаривающиеся клетки, что повышает эффективность конъюгации.

Процесс конъюгации протекает через следующие стадии: установление контакта между донором и реципиентом, протаскивание нити ДНК от донора к реципиенту, достройка перенесенной нити ДНК комплементарной ей нитью в реципиентной клетке и рекомбинация между переданной хромосомой (ее фрагментами) и хромо­сомой клетки-реципиента, размножение мерозиготы и образование клеток, несущих признаки донора и реципиента.

Сущность поверхностного исключения заключается в том, что под контролем {га- генов синтезируются белки наружной мембраны, препятствующие (исключающие возможность) проникновению в клетку, несущую плазмиду, другой, но близкород­ственной ей плазмиды, или подавляющие конъюгативную репликацию ее ДНК.

Конъюгативная репликация переносимой нити хромосомной или плазмидной ДНК осуществляется также под контролем плазмидных генов. Классическим приме­ром конъюгативной плазмиды является половой фактор, или F-плазмида. Эта плазмида представляет собой двунитевую кольцевид­ную молекулу ДНК, состоящую из 94,5 тыс. п. н.

Главная функция этой плазмиды — контроль конъюгации у бактерий кишечной группы. Ее tra-оперон содержит больше тридцати генов, которые контролируют процесс конъюгации. Эта плазмида может как находиться в автономном состоянии, так и интегрироваться в хромосому клетки. Находясь в автономном состоянии, она контролирует только собственный перенос, при котором F-клетка (клетка, лишен­ная F-плазмиды) превращается в F-клетку (клетку, содержащую F-плазмиду).

F-плазмида может интегрироваться в определенные участки бактериальной хромо­сомы, в этом случае она станет контролировать конъюгативный перенос хромосомы клетки. При этом одна из нитей ДНК хромосомы в месте интеграции F-плазмиды разрезается, и ее 5'-конец через донорный мостик начинает протягиваться в клетку- реципиент. Репликация ДНК в этом случае протекает по принципу «крутящегося кольца». Таким образом, конъюгация начинается с установления контакта между донором и реципиентом с помощью донорной ворсинки. Последняя смыкает­ся с рецептором клеточной мембраны клетки-реципиента. Нередко такой контакт устанавливается не только между двумя клетками, а между многими клетками, обра­зуя агрегаты спаривания. Предполагают, что нить ДНК в процессе конъюгации про­таскивается через канал донорной ворсинки. Поскольку донорный мостик является непрочным, процесс конъюгации может в любой момент прерваться. Поэтому при конъюгации может переноситься или часть хромосомы, или, реже, полная хромосо­ма. С помощью F-плазмид частота переноса генов между бактериями существенно возрастает. Поэтому клетки, у которыхF-плазмида интегрирована в хромосому, обозначают как клетки Hfr.

В некоторых случаях интегрированная в хромосому F-плазмида может из нее ис­ключаться и, подобно умеренному фагу, «выхватывать» из хромосомы ее ген или даже Целую группу генов. Такая плазмида, содержащая в своей ДНК часть генов хромосо­мы клетки, называется F-плазмидой.

4. Генетический контроль синтеза факторов патогенности у бактерий.

У бактерий обнаружено два типа генов, контролирующих синтез факторов патогенности: гены собственной хромосомы клетки и гены, привнесенные в хро­мосому так называемыми мобильными генетическими элементами. Эта вторая группа включает в себя умеренные конвертирующие фаги, фаги-транспозоны, плазмиды и транспозоны. Мобильными их называют потому, что они содержат собственные генетические компоненты, кодирующие транспозазу, интегразу, а также сайт-специфические участки, которые взаимодействуют со специфическими сайтами хромосомы клетки и обеспечивают интеграцию в нее.

Включение генома (или части генома) профага приводит к образованию в составе хромосомы бактерий островов патогенности, которые содержат ген или кассет}' генов, контролирующих продукцию основных факторов патогенности. Например, в хромосоме холерного вибриона есть два острова патогенности. В одном из них расположены гены умеренного профага СТХф, а в другом — фага VPIф. Как правило, гены патогенности, содержащиеся в островах патогенности, регулируются координированно, т. е. функционируют как самостоятельный геном патогенности в составе хромосомы клетки. В результате рекомбинации умеренных фагов с хромосомой бактерий возникли многие патогенные бактерии (Vibrio cholerae, Corynobacterium diphtheriae, Clostridium botulinum, EHEC и др.), а в результате переноса генов патогенности плазмидами — Bacillus antracis, Yersinia pestis, ETEC, EIEC, EPEC и др. Во всяком случае, острова патогенности в форме мобильных генетических элементов обнаружены у многих видов патогенных бактерий, но их нет у близкородственных непатогенных бактерий.

5. Понятие о генотипе и фенотипе микроба. Категории изменчивости: наследствен­но закрепленная и фенотипическая. Мутации индуцированные и спонтанные. Мо­лекулярные механизмы мутаций. Транспозируемые элементы и их роль в эволю­ции.

Свойства микроор­ганизмов, как и любых других организмов, определяются их генотипом, т.е. совокупностью генов данной особи. Термин «геном» в отношении микроорганизмов — почти синоним по­нятия «генотип».

Фенотип представляет собой результат взаимодействия меж­ду генотипом и окружающей средой, т. е. проявление генотипа в конкретных условиях обитания. Фенотип микроорганизмов хотя и зависит от окружающей среды, но контролируется генотипом, так как характер и степень возможных для данной клетки сте­нотипических изменений определяются набором генов, каждый из которых представлен определенным участком молекулы ДНК.

В основе изменчивости лежит либо изменение реакции гено­типа на факторы окружающей среды, либо изменение самого генотипа в результате мутации генов или их рекомбинации. В свя­зи с этим фенотипическую изменчивость подразделяют на на­следственную и ненаследственную.

Ненаследственная (средовая, модификационная) изменчивость обусловлена влиянием внутри- и внеклеточных факторов на про­явление генотипа. При устранении фактора, вызвавшего моди­фикацию, данные изменения исчезают.

Наследственная (генотипическая) изменчивость, связанная с мутациями, — мутационная изменчивость. Основу мутации со­ставляют изменения последовательности нуклеотидов в ДНК, полная или частичная их утрата, т. е. происходит структурная пе­рестройка генов, проявляющаяся фенотипически в виде изме­ненного признака.

Наследственная изменчивость, связанная с рекомбинациями, называется рекомбинационной изменчивостью.

Под мутацией подразумеваются стабильные наследуемые изменения в генотипе, проявляющиеся фенотинически в виде измененного признака. Основу мутации составляют качественные или количественные изменения последовательности нуклеотидов в ДНК, которые могут возникать при жизнедеятельности бактерий под влиянием эндогенных факторов или при действии химических и физических мутагенов.
Различают так называемые спонтанные мутации, под которыми понимают мутации, причины возникновения которых неизвестны. Частота спонтанных мутаций мала.
При искусственном же воздействии различных физических и химических мутагенов частота мутаций возрастает, — эти мутации принято называть индуцированными.

Подвижные генетические элементы.

В состав бактериального генома, как в бак­териальную хромосому, так и в плазмиды, входят подвижные генетические элементы. К подвижным генетическим элементам от­носятся вставочные последовательности и транспозоны.

Вставочные (инсерционные) последова­тельности IS-элементы — это участки ДНК, способные как целое перемещаться из одного участка репликона в другой, а также между репликонами. Они содержат лишь те гены, которые необходимы для их собственного перемещения — транс­позиции: ген, кодирующий фермент транспозазу, обеспечивающую процесс исключения IS-элемента из ДНК и его интеграцию в но­вый локус, и ген, детерминирующий синтез репрессора, который регулирует весь процесс перемещения.

Отличительной особенностью IS-элементов является наличие на концах вставочной последовательности инвертированных повто­ров. Эти инвертированные повторы узнает фермент транспозаза. Транспозаза осуществляет одноцепочечные разрывы це­пей ДНК, расположенных по обе стороны от подвижного элемента. Оригинальная копия IS-элемента остается на прежнем месте, а ее реплицированный дупликат перемещается на новый участок.

Перемещение подвижных генетических элементов принято называть репликативной или незаконной рекомбинацией. Однако в отличие от бактериальной хромосомы и плазмид подвижные генетические элементы не являются самостоятельными репликонами, так как их репликация — составной элемент репликации ДНК репликона, в составе кото­рого они находятся.

Известно несколько разновидностей IS-элементов, которые различаются по раз­мерам и по типам и количеству инвертиро­ванных повторов.

Транспозоны — это сегменты ДНК, облада­ющие теми же свойствами, что и IS-элементы, но имеющие структурные гены, т. е. гены, обеспечивающие синтез молекул, обладаю­щих специфическим биологическим свойс­твом, например токсичностью, или обеспечи­вающих устойчивость к антибиотикам.

Перемещаясь по репликону или между реп­ликонами, подвижные генетические элемен­ты вызывают:

1. Инактивацию генов тех участков ДНК, куда они, переместившись, встраиваются.

2. Образование повреждений генетического материала.

3. Слияние репликонов, т. е. встраивание плазмиды в хромосому.

4. Распространение генов в популяции бак­терий, что может приводить к изменению биологических свойств популяции, смене возбудителей инфекционных заболеваний, а также способствует эволюционным процес­сам среди микробов.

Изменения бактериального генома, а следо­вательно, и свойств бактерий могут происхо­дить в результате мутаций и рекомбинаций.

6. Плазмиды бактерий. Определение понятия. Классы плазмид. Характеристика R-плазмид, их значение, распространение среди бактерий.

Плазмиды — наипростейшие организмы, лишенные обологки, собствен­ных систем синтеза белка и мобилизации энергии и представляющие собой особый класс абсолютных внутриклетогных паразитов, наделяющих своих бактерий-хозяев полезными для них свойствами. Плаз­миды способны автономно копироваться (реплицироваться) и существовать в цитоплазме клетки, поэтому в клетке может быть несколько копий плазмид. Плазмиды могут включаться (интег­рировать) в хромосому и реплицироваться вместе с ней. Разли­чают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссив­ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Плазмиды несут гены, не обязательные для клетки-хозя­ина, придают бактериям дополнительные свойства, которые в определенных условиях окружающей среды обеспечивают их вре­менные преимущества по сравнению с бесплазмидными бакте­риями.

Некоторые плазмиды находятся под стро­гим контролем. Это означает, что их реплика­ция сопряжена с репликацией хромосомы так, что в каждой бактериальной клетке присутс­твует одна или, по крайней мере, несколько копий плазмид.

У бактерий различных видов обнаружены R-плазмиды, несу­щие гены, ответственные за множественную устойчивость к лекарственным препаратам — антибиотикам, сульфаниламидам и др., F-плазмиды, или половой фактор бактерий, определяющий их способность к конъюгации и образованию половых пилей, Ent-плазмиды, детерминирующие продукцию энтеротоксина.

Плазмиды могут определять вирулентность бактерий, напри­мер возбудителей чумы, столбняка, способность почвенных бак­терий использовать необычные источники углерода, контроли­ровать синтез белковых антибиотикоподобных веществ — бактериоцинов, детерминируемых плазмидами бактериоциногении, и т. д. Существование множества других плазмид у микроорганиз­мов позволяет полагать, что аналогичные структуры широко рас­пространены у самых разнообразных микроорганизмов.

Классификация плазмид по свойствам, которыми они наделяют своих носителей

1) F-плазмиды- донорные функции

2) R-плазмиды- устойчивость к лекарственным препаратам

3) Соl-плазмиды- синтез колицинов

4) Еnt-плазмиды- синтез энтеротоксинов

5) Нlу-плазмиды- Синтез гемолизинов

6) Биодеградативные плазмиды- разрушение различных органических и неорганических соединений, в том числе содержащих тяжелые металлы

7) Криптические плазмиды -неизвестны

В условиях широкого применения антибиотиков и других химиопрепаратов происходит естественный отбор тех штам­мов патогенных бактерий, которые являются носителями R-плазмид. Среди них формируются новые эпидемические клоны патогенных бактерий. В настоящее вре­мя они играют ведущую роль в эпидемиологии инфекционных болезней, и от их рас­пространения во многом зависит эффективность антибиотико- и химиотерапии, а в итоге — здоровье и жизнь людей.

7. Лекарственная устойчивость микробов. Генетические и биохимические основы устойчивости бактерий к антибиотикам. Конъюгативные и неконъюгативные R-плазмиды, их основные свойства, механизмы передачи и значение.

--Биохимические основы устойчивости. Инактивация препарата бактериальными ферментами. Некоторые бактерии способны продуцировать особые ферменты, которые де­лают препараты неактивными (например, бета-лактамазы, аминогликозид-модифицирующие ферменты, хлорамфениколацетилтрансфераза). Бета-лактамазы — это ферменты, разруша­ющие бета-лактамное кольцо с образованием неактивных соединений. Гены, кодирующие эти ферменты, широко распространены среди бактерий и могут быть как в составе хромосо­мы, так и в составе плазмиды.

Для борьбы с инактивирующим действием бета-лактамаз используют вещества — ин­гибиторы (например, клавулановую кисло­ту, сульбактам, тазобактам). Эти вещества содержат в своем составе бета-лактамное кольцо и способны связываться с бета-лактамазами, предотвращая их разрушитель­ное действие на бета-лактамы. При этом собственная антибактериальная активность таких ингибиторов низкая. Клавулановая кислота ингибирует большинство известныхбета-лактамаз. Ее комбинируют с пеницил-линами: амоксициллином, тикарциллином, пиперациллином.

Предупредить развитие антибиотикорезистентности у бактерий практически не­возможно, но необходимо использовать антимикробные препараты таким образом, чтобы не способствовать развитию и рас­пространению устойчивости (в частности, применять антибиотики строго по показа­ниям, избегать их использования с профи­лактической целью, через 10—15 дней ан-тибиотикотерапии менять препарат, по воз­можности использовать препараты узкого спектра действия, ограниченно применять антибиотики в ветеринарии и не использо­вать их как фактор роста).

--Генетические основы приобретенной резис­тентности. Устойчивость к антибиотикам определяется и поддерживается генами резистентности (r-генами) и условиями, способствующими их распространению в микробных популяциях. Приобретенная лекарственная устойчивость может возникать и распространяться в попу­ляции бактерий в результате:

• мутаций в хромосоме бактериальной клетки с последующей селекцией (т. е. отбором) му­тантов.

• переноса трансмиссивных плазмид резис­тентности (R-плазмид).

• переноса транспозонов, несущих r-гены

Разли­чают трансмиссивные и нетрансмиссивные плазмиды. Трансмиссив­ные (конъюгативные) плазмиды могут передаваться из одной бактерии в другую.

Существует несколько генетических меха­низмов переноса плазмид между бактериальными клетками:

а) путем трансформации;

б) с помощью трансдуцирующих фагов;

в) путем мобилизации на перенос с помощью конъюгативных плазмид;

г) с помощью механизма самопереноса, контролируемого системой генов, объ­единенных в tга-оперон.

В условиях широкого применения антибиотиков и других химиопрепаратов происходит естественный отбор тех штам­мов патогенных бактерий, которые являются носителями R-плазмид. Среди них формируются новые эпидемические клоны патогенных бактерий. В настоящее вре­мя они играют ведущую роль в эпидемиологии инфекционных болезней, и от их рас­пространения во многом зависит эффективность антибиотико- и химиотерапии, а в итоге — здоровье и жизнь людей.

УЧЕНИЙ ОБ ИНФЕКЦИИ

1. Антисептика. Дж. Листер и Н. И. Пирогов - основоположники антисептики. Асептика. Методы стерилизации.

Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.

Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке.

Существует три основных метода стерили­зации: тепловой, лучевой, химической.

Тепловая стерилизация основана на чувстви­тельности микробов к высокой температуре. При 60 "С и наличии воды происходит денату­рация белка, деградация нуклеиновых кислот, липидов, вследствие чего вегетативные фор­мы микробов погибают. Споры, содержащие очень большое количество воды в связанном состоянии и обладающие плотными оболоч­ками, инактивируются при 160—170 °С.

Химическая стерилизация предполагает ис­пользование токсичных газов: оксида этиле­на, смеси ОБ (смеси оксида этилена и бро­мистого метила в весовом соотношении 1:2,5) и формальдегида. Эти вещества являются ал-килирующими агентами, их способность в присутствии воды инактивировать активные группы в ферментах, других белках, ДНК и РНК приводит к гибели микроорганизмов.

Стерилизация газами осуществляется в присутствии пара при температуре от 18 до 80 °С в специальных камерах. В больницах используют формальдегид, в промышленных условиях — оксид этилена и смесь ОБ.

Перед химической стерилизацией все из­делия, подлежащие обработке, должны быть высушены.

Лучевая стерилизация осуществляется либо с помощью гамма-излучения, либо с помо­щью ускоренных электронов.

Лучевая стерилизация является альтернати­вой газовой стерилизации в промышленных условиях, и применяют ее также в тех случаях, когда стерилизуемые предметы не выдержи­вают высокой температуры.

Фильтрование. Фильтрование с помощью раз­личных фильтров (керамических, асбестовых, стеклянных), а в особенности мембранных уль­трафильтров из коллоидных растворов нитроцеллюкозы или других веществ позволяет освободить жидкости (сыворотку крови, лекарства) от бак­терий, грибов, простейших и даже вирусов. Для ускорения процесса фильтрации обычно создают повышенное давление в емкости с фильтруемой жидкостью или пониженное давление в емкости с фильтратом.

Н.И. Пирогов ближе других подошел вплотную к антисептики. собранные вместе его статьи и высказывания представляют собой стройную методику борьбы с инфекцией. Он рекомендовал разделение разделения больных зараженных различными госпитальными миазмами от незараженных больных. Также он рекомендовал различные способы очищения воздуха, сжигать испачканные гноем тюфяки, следить за чистотой белья, мыть стены и полы в госпиталях хлорной известью.

Н.И. Пирогов отмечал в своих статьях, что является «… ревностным сторонником антисептического способа лечения ран…». Еще до 1852 года Н.И. Пирогов применял при лечении ран повязки, пропитанные антисептическими веществами (азотнокислое серебро, сернокислый цинк, винный спирт и др.).

Почти одновременно с Н.И. Пироговым применял антисептические вещества для лечения ран русский хирург и анатом И.В. Буяльский, широко пользовавшийся раствором хлорной извести для лечения инфицированных ран. Весьма близко к идее антисептики подошли венгерский акушер Игнац Земмельвейс, петербургские акушеры Ф.К. Гугенбергер и А.А. Китер.

Из всех работ Пастера наибольшее влияние оказали на Листера те, в которых доказывалось, что брожение и гниение вызывается живыми существами, находящимися в воздушной пыли, и эта пыль может быть уничтожена при нагревании или фильтрации через вату или же задержана в изогнутых и вытянутых трубках бутылей. Не менее важным для Листера было указание Пастера на то, что жидкости человеческого тела, кровь и моча, свободны от микроорганизмов, и если эти жидкости тщательно сохранять в стерилизованных сосудах, то они неопределенно долгое время не подвергаются гниению. Таким образом, к 1865 г. Листер был уже в сущности вполне подготовлен к открытию антисептики.

Жизненно важным вопросом как для больного, так и для хирурга был вопрос о нагноении, ибо оно нередко переходило в госпитальную гангрену. Теперь, когда стало ясно, что в основе нагноения лежит разложение тканей, оставалось только выяснить, в чем причина этого разложения. Понятно поэтому, что открытие Пастером роли микроорганизмов в процессах брожения и гниения явилось для Листера настоящим откровением. Листер решил, что те же средства, которые останавливают брожение и гниение, должны так же влиять на возникновение госпитальных болезней. Однако практическое применение этих средств, пока в науке господствовал взгляд, что истинной причиной разложения является кислород, исключалось. Когда же Пастер опроверг убеждение Либиха, что кислород является причиной нагноения, и доказал, что истинная причина - мельчайшие живые существа, находящиеся в воздухе, открылись широкие возможности для антисептики. Исходя из работ Пастера, который доказал, что кровь или мясо, находясь в антисептическом растворе и в стерильной посуде с плотно заткнутой пробкой, не подвергаются гниению и разложению, Листер пытался провести аналогию с человеческим организмом. Он стал рассматривать кожу человека как своего рода бутылку, которая обволакивает тело, способное к гниению. Но стоит каким-либо путем поранить кожу, как начинается борьба между живой тканью организма и несущими смерть зародышами, находящимися в воздухе.

2. Влияние на микробов физических факторов. Стерилизация. Пастеризация. Тиндализация.

Влияние физических факторов.

Влияние температуры. Различные группы микроорга­низмов развиваются при определенных диапазонах температур. Бактерии, растущие при низкой температуре, называют психрофилами, при средней (около 37 °С) — мезофилами, при вы­сокой — термофилами.

Высушивание. Обезвоживание вызывает нарушение функ­ций большинства микроорганизмов. Наиболее чувствительны к высушиванию патогенные микроорганизмы (возбудители гоно­реи, менингита, холеры, брюшного тифа, дизентерии и др.). Более устойчивыми являются микроорганизмы, защищенные слизью мокроты.

Высушивание под вакуумом из замороженного состояния — лиофилизацию — используют для продления жизнеспособнос­ти, консервирования микроорганизмов. Лиофилизированные куль­туры микроорганизмов и иммунобиологические препараты дли­тельно (в течение нескольких лет) сохраняются, не изменяя своих первоначальных свойств.

Действие излучения. Неионизирующее излучение — уль­трафиолетовые и инфракрасные лучи солнечного света, а также ионизирующее излучение — гамма-излучение радиоактивных ве­ществ и электроны высоких энергий губительно действуют на микроорганизмы через короткий промежуток времени. УФ-лучи применяют для обеззараживания воздуха и различных предме­тов в больницах, родильных домах, микробиологических лабо­раториях. С этой целью используют бактерицидные лампы УФ-излучения с длиной волны 200—450 нм.

Ионизирующее излучение применяют для стерилизации од­норазовой пластиковой микробиологической посуды, питатель­ных сред, перевязочных материалов, лекарственных препаратов и др. Однако имеются бактерии, устойчивые к действию иони­зирующих излучений, например Micrococcus radiodurans была вы­делена из ядерного реактора.

Действие химических веществ. Химические вещества могут ока­зывать различное действие на микроорганизмы: служить источ­никами питания; не оказывать какого-либо влияния; стимули­ровать или подавлять рост. Химические вещества, уничтожающие микроорганизмы в окружающей среде, называются дезинфи­цирующими. Антимикробные хи­мические вещества могут обладать бактерицидным, вирулицидным, фунгицидным действием и т.д.

Химические вещества, используемые для дезинфекции, отно­сятся к различным группам, среди которых наиболее широко представлены вещества, относящиеся к хлор-, йод- и бромсодержащим соединениям и окислителям.

Антимикробным действием обладают также кислоты и их соли (оксолиновая, салициловая, борная); щелочи (аммиак и его соли)

Стерилизация - предполагает полную инактивацию микробов в объектах, подвергшихся обработке.

Пастеризация - способ уничтожения микроорганизмов в жидкостях и пищевых продуктах однократным нагреванием (обычно при 60-70C в течение 15-30 мин). Предложен Л. Пастером. Применяется для консервирования молока, вина, пива и др.

Тиндализация - способ униточжения микробов и их спор в определенном объекте. Осуществляется дробной обработкой паром обычно при температуре 100 °С. В периоды между нагреваниями объекты выдерживают в условиях, способствующих прорастанию спор. Применяется в основном для стерилизации жидкостей и пищевых продуктов, портящихся при температуре выше 100 °С.

3. Антагонизм среди микробов. Работы И. И. Мечникова в этой области. Микробы- антагонисты как продуценты антибиотиков.

Анти­биотики — вещества природного происхождения, обладающие выраженной биологигеской активностью. Они могут быть получены из микробов, расте­ний, животных тканей и синтетическим путем.

Основными продуцентами антибиотиков служат микроорганизмы, обитающие в почве и воде, где они постоянно вступают между собой в самые разнообразные взаимоотношения. Последние могут быть нейтральными, взаимовыгодными (на­пример, деятельность гнилостных бактерий создает условия для деятельности ни­трифицирующих бактерий), но очень часто они являются антагонистическими. И это понятно. Только таким путем в природе могло сложиться сбалансированное сосуществование громадного числа видов живых существ. Антагонистические вза­имоотношения между бактериями наблюдал еще Л. Пастер. И. И. Мечников пред­ложил использовать антагонизм между бактериями на пользу человеку. Он, в част­ности, рекомендовал подавлять активность гнилостных бактерий в кишечнике че­ловека, продукты жизнедеятельности которых, по его мнению, сокращают жизнь человека, молочнокислыми бактериями.

Механизмы микробного антагонизма различны. Они могут быть связаны с кон­куренцией за кислород и питательные вещества, с изменением рН среды в сторону, неблагоприятную для конкурента, и т. д.

Одним из универсальных механизмов микробного антагонизма является синтез химических веществ-антибиотиков, которые либо подавляют рост и размножение других видов микроорганизмов (бактериостатическое действие), либо убивают их (бактерицидное действие).

4. Химиотерапия и химиопрофилактика инфекционных болезней. Антибиотики. Принципы их лечебного применения. Методы определения чувствительности бактерий к антибиотикам. Осложнения при антибиотикотерапии и их предупреждение.

Химиотерапия — специфическое антимикробное, антипаразитар­ное лечение при помощи химических веществ. Эти вещества обла­дают важнейшим свойством — избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма.

Анти­биотики — вещества природного происхождения, обладающие выраженной биологигеской активностью. Они могут быть полугены из микробов, расте­ний, животных тканей и синтетигеским путем

Рациональное лечение антибиотиками должно строиться на основе знания инди­видуальных особенностей пациента, течения заболевания, биологии возбудителя и его отношения к антибиотикам, а также свойств назначаемого препарата (препаратов). По мнению С. М. Навашина, необходимо придерживаться следующих основ­ных принципов рациональной антибиотикотерапии:

1) выделение и идентификация возбудителя, изучение его антибиотикограммы;

2) выбор наиболее активного и наименее токсичного препарата;

3) определение оптимальных доз и методов введения на основе знания особенно­стей кинетики антибиотика в организме больного для создания в крови, жидкостях и тканях организма терапевтических концентраций, превышающих в 2—3 раза ми­нимальную подавляющую концентрацию для данного возбудителя;

4) своевременное начало лечения и проведение курсов антибиотикотерапии не­обходимой продолжительности вплоть до полного закрепления терапевтического эффекта;

5) знание характера и частоты побочных явлений при назначении антибиотиков, особенно в условиях нарушения их распределения в организме больного при неко­торых патологических состояниях, например почечно-печеночной недостаточности;

6) комбинирование антибиотиков между собой и с другими препаратами с целью усиления антибактериального эффекта, улучшения их фармакокинетики и сниже­ния частоты побочных явлений.

Чаще всего для определения чувствительности бактерий к антибиотикам используются два метода: метод диффузии в агар с приме­нением стандартных дисков, пропитанных антибиотиком, и метод серийных разве­дений антибиотика.

--Осложнения. При неоднократном или длительном применении, наблюдаются нежелательные реакции, которые можно разделить на следующие 4 группы: аллергические, токсические, эндотоксические и дисбактериозы.

Аллергические реакции наблюдаются в тех случаях, когда антибио­тик выступает в качестве аллергена. Могут носить ха­рактер крапивницы, дерматита, сыпи, ринита и т. п. Наибольшую опасность представ­ляет пенициллиновый шок — реакция гиперчувствительности немедленного типа.

Токсические реакции возникают чаще всего в связи с органотропным фармакодинамическим действием антибиотика и при продолжительном лечении. Проявля­ются в виде поражения вестибулярного аппарата (неомицин, канамицин, стрепто­мицин), почек (полимиксин, неоми­цин, мономицин, стрептомицин), периферических нервов, различных поражений ЦНС (циклосерин, неомицин, поли­миксин) и других нарушений.

Наиболее тяжелым бывает токсическое воздействие на кровь: агранулоцитоз, апластическая анемия (левомицетин).

Эндотоксические реакции развиваются в тех случаях, когда под влиянием ан­тибиотика происходит массовое разрушение грамотрицательных бактерий, со­провождающееся выделением и поступлением в кровь их эндотоксина (липополисахарида).

Одним из самых частых осложнений, особенно при длительном применении ан­тибиотиков с широким антимикробным спектром, являются дисбактериозы.

5. Микрофлора воздуха. Роль воздуха в распространении возбудителей инфекцион­ных болезней. Методы исследования микрофлоры воздуха.

Микробиологический контроль возду­ха проводится с помощью методов естест­венной или принудительной седиментации микробов. Естественная седиментация (по методу Коха) проводится в течение 5—10 мин путем осаждения микробов на поверхность твердой питательной среды в чашке Петри. Принудительная седиментация микробов осуществляется путем «посева» проб воздуха на питательные среды с помощью специаль­ных приборов (импакторов, импинджеров, фильтров). Импакторы — приборы для при­нудительного осаждения микробов из воздуха на поверхность питательной среды (прибор Кротова, пробоотборник аэрозоля бактерио­логический и др.). Импшджеры — приборы, с помощью которых воздух проходит через жидкую питательную среду или изотоничес­кий раствор хлорида натрия.

Санитарно-гигиеническое состояние воз­духа определяется по следующим микробио­логическим показателям:

1. Общее количество микроорганизмов в 1 м3 воздуха (так называемое общее микробное число, или обсемененность воздуха) — коли­чество колоний микроорганизмов, выросших при посеве воздуха на питательном агаре в чашке Петри в течение 24 ч при 37 °С, выра­женное в КОЕ;

2. Индекс санитарно-показательных микро­бов— количество золотистого стафилококка и гемолитических стрептококков в 1 м3 воздуха. Эти бактерии являются представителями мик­рофлоры верхних дыхательных путей и имеют общий путь выделения с патогенными микроор­ганизмами, передающимися воздушно-капель­ным путем. Появление в воздухе спорообразующих бактерий — показатель загрязненности воздуха микроорганизмами почвы, а появление грамотрицательных бактерий — показатель воз­можного антисанитарного состояния.

Для оценки воздуха лечебных учреждений мож­но использовать данные из официально рекомен­дованных нормативных документов.

6.Микрофлора воды. Роль воды в распространении возбудителей инфекционных болезней. Понятие о коли-титре и коли-индексе.

Вода, как и почва, является естественной средой обитания для многих видов микро­организмов всех царств жизни. Разнообразные микроорганизмы обитают как в воде от­крытых водоемов, так и в грунтовых водах: палочки, кокки, вибрионы, спириллы, спи­рохеты, различные фотосинтезирующие бактерии, грибы, простейшие, вирусы и плаз­миды. Многие виды галофильных бактерий обитают в морских водах. Численность микроорганизмов в воде определяется главным образом содержанием в ней органичес­ких веществ, которые под влиянием микроорганизмов подвергаются совершенно таким же превращениям, как и в почве. В 1 мл воды количество микробов может превышать несколько миллионов. Грунтовые подземные воды чище, так как, просачиваясь через почву, вода подвергается своеобразной фильтрации, в результате которой большинство микробов задерживается в фильтрующем слое. Численность микроорганизмов в воде открытых водоемов подвержена колебаниям и зависит от климатических условий, времени года, а главным образом, от степени загрязнения рек, озер и морей сточными и ка­нализационными водами и отходами промышленных, агропромышленных и других предприятий. В реки, озера, моря из прибрежных городов и других населенных пунктов выбрасывается такое количество сточных вод, несущих милиариады микробов и содержа­щих огромное количество органических веществ, что вода не успевает самоочищаться. В результате возникла и сохраняется серьезная глобальная экологическая проблема.

Питьевая вода считается хорошей, если общее количество бактерий в 1 мл — не более 100; сомнительной — 100—150; загрязненной, — если содержание бактерий в 1 мл 500 и более. Количество микроорганизмов в придонном слое ила озер и рек варьирует в пределах от 100 до 400 млн на 1 г.

Вода играет исключительно важную роль в эпидемиологии многих инфекционных заболеваний, особенно кишечных (брюшного тифа, дизентерии, сальмонеллезов, холе­ры, вирусных гепатитов, полиомиелита и т. п.), возбудители которых выделяются вме­сте с испражнениями от больных и носителей и вместе со сточными водами поступают в воду открытых водоемов, а оттуда нередко и в питьевую воду. Хотя патогенные бак­терии слабо приспособлены к существованию в воде, где на них оказывают неблагопри­ятное действие солнечный свет и различные другие факторы, включая конкурентную водную микрофлору, многие из них могут достаточно длительное время сохраняться в воде. Более того, в летнее время при наличии в воде органических веществ, щелочной рН и благоприятной температуры некоторые из них, в том числе холерный вибрион, могут даже размножаться. Заразиться можно и через лед, в котором патогенные бакте­рии могут сохраняться в течение нескольких недель и даже месяцев.

Загрязненная вода — главный источник заражения холерой, дизентерией, брюш­ным тифом и другими кишечными инфекциями, а также лептоспирозом и, нередко, туляремией.

Микробиологические методы исследования воды сводятся к определению общего количества микроорганизмов в 1 мл воды и выявлению тех или иных видов патоген­ных бактерий (особенно холерного вибриона). Кроме того, поскольку прямое выделе­ние патогенных бактерий из воды требует специальных исследований, существуют косвенные методы, позволяющие дать количественную оценку степени фекального загрязнения.

Нормативы микробиологических показателей питьевой воды таковы:

1. Общее микробное число (количество микроорганизмов в 1 мл воды) — не бо­лее 100.

2. Число бактерий группы кишечной палочки (коли-индекс) — количество БГКП в 1000 мл воды — не более

3. Эшерихии (показатель свежего фекального загрязнения) — количество эшерихий в 1000 мл воды — отсутствие.

4. Колифаги — количество бляшкообразующих единиц (БОЕ) в 1000 мл воды — отсутствие.

7. Микрофлора почвы. Роль почвы в распространении возбудителей инфекционных болезней. Значение почвы в распространении столбняка в условиях Краснодарского края.

Почва — среда обитания многочисленных видов микроорганизмов и крупнейший резервуар их в природе. Количество микробов в 1 г почвы измеряется обычно сотнями и тысячами миллионов клеток. Оно варьирует от 200 млн в глинистой почве до 5 млрд в черноземной почве. В 1 г пахотного слоя почвы содержится 1—10 млрд бактерий, а в слое ее толщиной 15 см на площади в 1 га может содержаться от 1 до 5—6 тонн микроб­ной массы. Даже в песках пустынь, где почти отсутствует влага, содержится до 100000 микробов в 1 г. Численность и видовой состав их в почве зависят от содержания в ней органических веществ и влаги, структуры почвы, способа ее сельскохозяйственной обработки, климатических условий, характера растительного покрова, степени загряз­нения почвы отходами хозяйственной деятельности человека и многих других факто- ров. Состав микрофлоры почвы складывается из различных комбинаций бактерий (сот­ни и тысячи видов), грибов, простейших и вирусов. Фактически она содержит предста­вителей всех царств жизни — вирусов, архебактерий, эубактерий и эукариот во всем их многообразии, которое зависит от действия многих факторов.

Самый поверхностный слой почвы содержит ограниченное число микробов из-за действия солнечных лучей и высушивания. Главная масса микробов содержится на глу­бине 10—20 см, в нижележащих ее горизонтах количество микроорганизмов уменьша­ется, и на глубине 5—6 метров почва может быть уже стерильной, так как распростра­нению микробов в глубину препятствует высокая поглотительная способность почвы.

Почва постоянно загрязняется различными отбросами, выделениями человека и животных, мертвыми растениями и животными. Огромная роль в процессах само­очищения почвы и в круговороте веществ в природе принадлежит микроорганиз­мам. В превращении органических веществ, поступающих в почву и образующихся в ней, принимают участие различные группы микробов: гнилостные, нитрифициру­ющие, азотфиксирующие, денитрифицирующие и др.

Патогенные микроорганизмы попадают в почву с испражнениями, мочой, гноем, мокротой, слюной и другими выделениями, с трупами людей и животных, погибших от инфекционных заболеваний. Попадая в почву, значительная часть патогенных микроорганизмов, не образующих спор, рано или поздно погибает. Сроки выжива­ния в почве возбудителей кишечных инфекций (дизентерии, брюшного тифа, холе­ры), чумы, бруцеллеза, туляремии, туберкулеза широко варьируют и составляют от нескольких часов до нескольких месяцев. Отмирание патогенных бактерий в почве зависит от ряда причин: высушивания; отсутствия необходимых питательных суб­стратов; действия антибиотических веществ, вырабатываемых почвенными бакте­риями и грибами; солнечных лучей; бактериофагов и т. п. Значительно дольше в почве сохраняются спорообразующие патогенные бактерии — аэробные и анаэробные — возбудители столбняка, газовой гангрены, ботулизма (их споры также сохраняются в почве многие годы, а при благоприятных условиях прорастают и бактерии размножаются, поддер­живая тем самым свое существование в почве). Поэтому почва играет основную роль в эпидемиологии столбняка, газовой гангрены (особенно в военных условиях) и боту­лизма, она является основным резервуаром возбудителей этих заболеваний.

8. Нормальная микрофлора человека и ее значение для организма. Микрофлора толстого кишечника. Ее формирование и состав. Дисмикробиоценоз, причины воз­никновения и способы предупреждения и лечения.

Организм человека заселен (колонизирован) более чем 500 ви­дов микроорганизмов, составляющих нормальную микрофлору человека, находящихся в состоянии равновесия (эубиоза) друг с другом и организмом человека. Микрофлора представляет со­бой стабильное сообщество микроорганизмов, т.е. микробиоценоз. Она колонизирует поверхность тела и полости, сообщающиеся с окружающей средой. Место обитания сообщества микроорга­низмов называется биотопом. В норме микроорганизмы отсутству­ют в легких и матке. Различают нормальную микрофлору кожи, слизистых оболочек рта, верхних дыхательных путей, пищева­рительного тракта и мочеполовой системы. Среди нормальной микрофлоры выделяют резидентную и транзиторную микрофлору. Резидентная (постоянная) облигатная микрофлора представ­лена микроорганизмами, постоянно присутствующими в орга­низме. Транзиторная (непостоянная) микрофлора не способна к длительному существованию в организме.

Микрофлора пищеварительного тракта является наиболее представительной по своему качественному и количе­ственному составу. При этом микроорганизмы свободно обита­ют в полости пищеварительного тракта, а также колонизируют слизистые оболочки.

Микро­флора толстой кишки — своеобразный экстракорпораль­ный орган. Она является антагонистом гнилостной микрофлоры, так как продуцирует молочную, уксусную кислоты, антибиоти­ки и др. Известна ее роль в водно-солевом обмене, регуляции газового состава кишечника, обмене белков, углеводов, жирных кислот, холестерина и нуклеиновых кислот, а также продукции биологически активных соединений — антибиотиков, витаминов, токсинов и др. Морфокинетическая роль микрофлоры заключа­ется в ее участии в развитии органов и систем организма; она принимает участие также в физиологическом воспалении сли­зистой оболочки и смене эпителия, переваривании и детокси-кации экзогенных субстратов и метаболитов, что сравнимо с функцией печени. Нормальная микрофлора выполняет, кроме того, антимутагенную роль, разрушая канцерогенные вещества.

Пристеночная микрофлора кишечника колонизирует слизис­тую оболочку в виде микроколоний, образуя своеобразную био­логическую пленку, состоящую из микробных тел и экзополи-сахаридного матрикса. Экзополисахариды микроорганизмов, на­зываемые гликокаликсом, защищают микробные клетки от раз­нообразных физико-химических и биологических воздействий. Слизистая оболочка кишечника также находится под защитой биологической пленки.

Важнейшей функцией нормальной микрофлоры кишечника является ее участие в колонизационной резистентнос­ти, под которой понимают совокупность защитных факторов организма и конкурентных, антагонистических и других особен­ностей анаэробов кишечника, придающих стабильность микро­флоре и предотвращающих колонизацию слизистых оболочек посторонними микроорганизмами.

--При дисмикробиоценоз происходят стойкие количест­венные и качественные изменения бактерий, входящих в состав нормальной микрофло­ры. При дисбиозе изменения происходят и среди других групп микроорганизмов (виру­сов, грибов и др.). Дисбиоз и дисбактериоз могут приводить к эндогенным инфекция­ми.

Дисбиозы классифицируют по этиологии (грибковый, стафилококковый, протейный и др.) и по локализации (дисбиоз рта, кишки, влагалища и т. д.). Изменения в составе и функциях нормальной микрофлоры сопро­вождаются различными нарушениями: разви­тием инфекций, диарей, запоров, синдрома мальабсорбции, гастритов, колитов, язвенной болезни, злокачественных новообразований, аллергий, мочекаменной болезни, гипо- и гиперхолестеринемии, гипо- и гипертензии, кариеса, артрита, поражений печени и др.

9. Сапрофитизм и паразитизм микробов. Патогенность и ее проявление (инфекциозность агрессивность, токсическое действие). Факторы патогенности. Вирулент­ность, методы ее определения.

Сапронозы - группа инфекционных заболеваний, для возбудителей которых главным естественным местом обитания являются абиотические (неживые) объекты окружающей среды. Этим данная группа отличается от прочих заразных болезней, для возбудителей которых главным естественным местом обитания служит заражённый организм человека (антропонозы) или животного (зоонозы).

Паразитизм - форма взаимоотношений между организмами (растениями, животными, микроорганизмами), относящимися к разным видам, из которых один (паразит) использует другого (хозяина) в качестве среды обитания и источника пищи.

Патогенность — видовой признак, передающийся по наследству, закрепленный в геноме мик­роорганизма, в процессе эволюции паразита, т. е. это генотипический признак, отражающий потенциальную возможность мик­роорганизма проникать в макроорганизм (инфективность) и раз­множаться в нем (инвазионность), вызывать комплекс патоло­гических процессов, возникающих при заболевании.

Фенотипическим признаком патогенного микроорганизма является его вирулентность, т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулент­ность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL«(доза, вызывающая гибель 50 % экспериментальных живот­ных). При этом учитывают вид животных, пол, массу тела, спо­соб заражения, срок гибели.

К основным факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Конкретных факторы патогенности:

1. Хемотаксис и подвижность

2. Ферменты, разрушающие субстраты слизи

3. Факторы адгезии и колонизации

4. Факторы инвазии

5. Факторы, препятствующие фагоцитозу

6. Факторы, подавляющие фагоцитоз

7. Ферменты «защиты и агрессии» бактерий

8. Токсины микробов

10. Пути и способы проникновения патогенных микробов в организм человека. Динамика развития инфекционного процесса, периоды. Бактерионосительство и его значение.

Пути заражения человека

Заражение человека патогенными микроорганизмами может произойти только через поврежденную кожу и слизистые оболочки глаза, дыхательных, пищевари­тельных и мочеполовых путей. Заражение через неповрежденную кожу происходит исключительно редко, так как кожа для большинства микро­организмов трудно проницаема. Однако даже самые ничтожные повреждения ее (укус насекомого, укол иглой, микротравмы и т. п.) могут стать причиной зараже­ния. Место проникновения возбудителя в организм человека или животного назы­вается входными воротами инфекции. В случае, если ими является слизистая обо­лочка, возможны три типа инфекции: размножение возбудителя на поверхности эпителиальных клеток; проникновение его в клетки с последующим внутриклеточ­ным размножением; проникновение возбудителя через клетки и распространение его по организму.

Способы заражения

Заражение человека происходит одним из следующих способов:

1. Воздушно-капельным или воздушно-пылевым.

2. Фекально-оральным. Возбудитель выделяется с испражнениями или мочой, заражение происходит через рот при употреблении инфицированных пищевых про­дуктов или воды.

3. Трансмиссивным, т. е. через укусы кровососущих членистоногих.

4. Контактным — прямой контакт с больным, реконвалесцентом, бактерионоси­телем или через загрязненные предметы обихода, т. е. непрямым контактом.

5. Половым путем.

6. При использовании нестерильных медицинских приборов, особенно шприцев и т. п.

7. Вертикальным, т. е. от матери ребенку через плаценту, во время родов или сра­зу после них.

Динамика развития инфекционной болезни.

1. Инкубационный период — период от момента заражения до появления первых признаков заболевания.

2. Продромальный период, или период предвестников. Он характеризуется обычно неспецифическими, общими проявлениями — слабость, разбитость, голов­ная боль, общее недомогание, повышение температуры и т. п.

3. Период развития (расцвета) болезни.

4. Период выздоровления, или реконвалесценции. Клиническое выздоровле­ние наступает обычно раньше патологоанатомического и бактериологического выздоровления.

Бактерионосительство. Очень часто после либо латентной инфекции, ли­бо перенесенного заболевания организм человека не в состоянии полностью осво­бодиться от возбудителя. При этом человек, будучи практически здоровым, стано­вится его носителем в течение многих месяцев или даже лет. Являясь источником заражения для других лиц, бактерионосители играют большую роль в эпидемио­логии многих заболеваний (брюшного тифа, дифтерии и др.), поскольку они вы­деляют их возбудителей в окружающую среду, заражают воздух, воду, пищевые продукты. Около 5—8 % людей, переболевших брюшным тифом, становятся хро­ническими (на срок более 3 мес.) носителями S. typhi и служат основным их резер­вуаром в природе.

11. Инфекция и инфекционный процесс. Факторы инфекционного процесса. Типы инфекций - абортивная, латентная, дремлющая, типичное инфекционное заболева­ние, атипичное заболевание, вирогения, медленная инфекция, бактерионосительство. Мех-мы персистирования.

--Термин инфекция или инфек­ционный процесс обозначает совокупность физиологических и патологических восста­новительно-приспособительных реакций, возникающих в восприимчивом макроор­ганизме при определенных условиях окру­жающей внешней среды в результате его взаимодействия с проникшими и размно­жающимися в нем патогенными или ус­ловно-патогенными бактериями, грибами и вирусами и направленных на поддержание постоянства внутренней среды макроорга­низма (гомеостаза).

-Современным учением об инфекции является признание того, что возникновение, развитие и исход инфек­ции как процесса взаимодействия между микро- и макроорганизмом зависят от свойств того и другого участников этого конкурентного взаимодействия и от условий внешней среды, в которых оно происходит.

1.Абортивная. Возбудитель проникает в организм, но не размножается в нем или в связи с надежной естественной резистентностью, или с приобретенным специ­фическим иммунитетом, подавляющим возбудителя. Таким образом, инфекцион­ный процесс обрывается, и возбудитель рано или поздно погибает или удаляется из организма.

2. Латентная (инаппарантная). Возбудитель проникает в организм, размножа­ется в нем, макроорганизм отвечает на него соответствующими иммунобиологичес­кими реакциями, ведущими к формированию приобретенного иммунитета и удале­нию возбудителя из организма. Однако никаких внешних клинических проявлений этой инфекции нет, она протекает скрыто (латентно). Нередко в такой латентной форме люди переносят полиомиелит, бруцеллез, некоторые вирусные гепатиты и другие болезни.

3. Дремлющая инфекция. Бессимптомное пребывание возбудителя в орга­низме может сохраняться долгое время после латентной инфекции или после пе­ренесенного заболевания, например легочного туберкулеза, закончившегося формированием первичного комплекса. Под влиянием условий, понижающих сопротивляемость организма, сохраняющиеся в нем живые микро­организмы активизируются и вызывают заболевание или его рецидив. Таким об­разом, патогенные микробы находятся некоторое время как бы в «дремлющем» состоянии. Такие «дремлющие» микробы могут проникать в организм из внеш­ней среды или быть результатом перехода в «дремлющее» состояние микроба- возбудителя. подавленного в своей активности, но сохранившего жизнеспособ­ность и потенциальную готовность к активации при благоприятных для него условиях. Поэтому они получили название «микробов, готовых к выходу», В тех случаях, когда «дремлющие» в организме ми­кробы сосредоточены в местном ограниченном очаге, откуда они могут распро­страняться и вызывать заболевание, применяют термин «фокальная» инфекция (например, заглохший воспалительный процесс в кариозном зубе, в котором его возбудитель — стрептококк — сохраняется в «дремлющем» состоянии до поры до времени).

4. Типичная для данного возбудителя форма инфекции. Возбудитель проникает в организм, активно в нем размножается, вызывая характерные (типичные) для дан­ной болезни клинические проявления, которые также характеризуются определен­ной цикличностью.





Дата публикования: 2015-02-03; Прочитано: 653 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.048 с)...