Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

III. Дифференциальное исчисление



1. Множества. Мощность множества. Конечные, счетные и несчетные множества.
Ограниченность, ограниченность сверху и снизу. Точная верхняя и нижняя грань.
Множество
- одно из ключевых понятий математики, в частности, теории множеств и логики.

Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть не сводимое к другим понятиям, а значит, и не имеющее определения.

Множество может быть замкнутым и незамкнутым, полным и пустым, упорядоченным и неупорядоченным, счётным и несчётным, конечным и бесконечным. Более того, как в наивной, так и в формальной теориях множеств любой объект обычно считается множеством.

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают заглавными буквами латинского алфавита, его элементы — строчными. Если а — элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а ∉ А (а не принадлежит А). В отличие от мультимножества каждый элемент множества уникален, и в множестве не может быть двух идентичных элементов. Иначе говоря, добавление к множеству элементов, идентичных уже принадлежащим множеству, не меняет его: {6, 11} = {11, 6} = {11, 11, 6, 11, 6}.

Мощность множества — характеристика множеств (в том числе бесконечных), обобщающая понятие количества (числа) элементов конечного множества.

В основе этого понятия лежат естественные представления о сравнении множеств:

1)Любые два множества, между элементами которых может быть установлено взаимно-однозначное соответствие (биекция), содержат одинаковое количество элементов (имеют одинаковую мощность).

2)Обратно: множества, равные по мощности, должны допускать такое взаимно-однозначное соответствие.

3)Часть множества не превосходит полного множества по мощности (то есть по количеству элементов).

До построения теории мощности множеств, множества различались по признакам: пустое/непустое и конечное/бесконечное, также конечные множества различались по количеству элементов. Бесконечные же множества нельзя было сравнить.

Мощность множеств позволяет сравнивать бесконечные множества. Например, счётные множества являются самыми «маленькими» бесконечными множествами.

В математическом анализе, и прилегающих разделах математики, ограниченное множество — множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай произвольного метрического пространства, а также на случай произвольного частично упорядоченного множества. Понятие ограниченности множества не имеет смысла в общих топологических пространствах, без метрики.

Множество вещественных чисел называется ограниченным сверху, если существует число b, такое что все элементы x не превосходят b:

Множество вещественных чисел называется ограниченным снизу, если существует число b, такое что все элементы x не меньше b:

Множество , ограниченное сверху и снизу, называется ограниченным.

Множество , не являющееся ограниченным, называется неограниченным. Как следует из определения, множество не ограничено тогда и только тогда, когда оно не ограничено сверху или не ограничено снизу.

Примером ограниченного множества является отрезок

неограниченного — множество всех целых чисел

ограниченного сверху, но неограниченного снизу — луч

ограниченного снизу, но неограниченного сверху — луч





Дата публикования: 2015-02-03; Прочитано: 248 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...