Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Вероятность попадания в заданный интервал нормальной случайной величины. Как уже было установлено, вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу



Как уже было установлено, вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу , равна определенному интегралу от плотности распределения, взятому в соответствующих пределах:
.
Для нормально распределенной случайной величины соответственно получим:
.
Преобразуем последнее выражение, введя новую переменную . Следовательно, показатель степени выражения, стоящего под интегралом преобразуется в:
.
Для замены переменной в определенном интеграле еще необходимо заменить дифференциал и пределы интегрирования, предварительно выразив переменную из формулы замены:
;
;
– нижний предел интегрирования;
– верхний предел интегрирования;
(для нахождения пределов интегрирования по новой переменной в формулу замены переменной были подставлены и – пределы интегрирования по старой переменной ).
Подставим все в последнюю из формул для нахождения вероятности:

где – функция Лапласа.
Вывод: вероятность того, что нормально распределенная случайная величина примет значение, принадлежащее интервалу , равна:
,
где – математическое ожидание, – среднее квадратическое отклонение данной случайной величины.





Дата публикования: 2015-02-03; Прочитано: 170 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...