Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

В области: , ,



Функция , дифференцируемая в ограниченной замкнутой области , достигает своего наибольшего и наименьшего значений или в стационарных точках , или в точках границы области . Для их нахождения необходимо: 1) Найти все стационарные точки функции и вычислить в них значения функции . 2) Найти наибольшее и наименьшее значения функции на границе , задаваемой одним аналитическим выражением в явном виде или . Если , где задаются одним аналитическим выражением в явном виде, то находят наибольшие и наименьшие значения и функции на каждом из участков границы. 3) Сравнить значения функции , , и выбрать из них наибольшее и наименьшее значения функции в области .

Решение. Изображаемобласть (она представляет собой треугольник, ограниченный прямыми , , ), находим стационарные точки функции , решаясистему уравнений

, и вычисляем в них значения функции .

Учитывая, что: , , получим . Отсюда , и, следовательно, единственной стационарной точкой функции в области является точка .

Вычислив значение функции в этой точке, получим .

2) Границу области представляем в виде , где : , ; : , ; : , и находим наибольшие и наименьшие значения функции на каждом из участков границы: , , , , , .

На участке : , : . Таким образом, пришли к задаче нахождения наибольшего и наименьшего значений функции одной переменной на отрезке . Эти значения функция принимает или в критических точках, принадлежащих интервалу или на концах отрезка. Для их отысканиянаходим первую производную функции: и определяем её внутренние критические точки, т.е. точки в которых или не существует: , точек в которых не существует нет. Вычисляем значения функции во внутренних критических точках (таких точек нет) и на концах отрезка : , . Сравнивая значения , находим наименьшее и наибольшее значения функции на отрезке : , .

На участке : , : . Таким образом, пришли к задаче нахождения наибольшего и наименьшего значений функции одной переменной на отрезке . Эти значения функция принимает или в критических точках, принадлежащих интервалу или на концах отрезка. Для их отысканиянаходим первую производную функции: и определяем её внутренние критические точки, т.е. точки в которых или не существует: , точек в которых не существует нет. Вычисляем значения функции во внутренних критических точках и на концах отрезка : , , . Сравнивая значения , , находим наименьшее и наибольшее значения функции на отрезке : , .

На участке : , : . Таким образом, пришли к задаче нахождения наибольшего и наименьшего значений функции одной переменной на отрезке . Эти значения функция принимает или в критических точках, принадлежащих интервалу или на концах отрезка. Для их отысканиянаходим первую производную функции: и определяем её внутренние критические точки, т.е. точки в которых или не существует: , точек в которых не существует нет. Вычисляем значения функции во внутренних критических точках и на концах отрезка : , , . Сравнивая значения , , находим наименьшее и наибольшее значения функции на отрезке : ,

3) Сравнивая значения функции , , , , , , , делаем вывод, что , .

Ответ: , .

91-100. Даны комплексные числа , и алгебраическое уравнение . Требуется: а) вычислить , , , ; б) найти все корни алгебраического уравнения на множестве комплексных чисел.





Дата публикования: 2015-01-10; Прочитано: 196 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...