Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Свойства генетического кода 1 страница



1. Генетический код универсален – един для всех организмов (вирусов, бактерий, растений, животных и человека).

2. Код триплетный. Месторасположение каждой аминокислоты кодируется сочетанием строго определенных трех нуклеотидов в мРНК, образующих один специфический кодон.

3. Код вырожденный. Одна аминокислота может кодироваться несколькими (от одного до шести) кодонами. Только две аминокислоты кодируются одним триплетом – метионин (АУГ) и триптофан (УГГ).

4. Код неперекрывающийся. Нуклеотидная последовательность считывается подряд в одном направлении – от 5' к 3', триплет за триплетом.

5. Кодон АУГ, находящийся в начале мРНК на конце 5', является инициатором синтеза полипептидной цепи. Если данный кодон находится в середине мРНК, то он кодирует аминокислоту метионин.

6. Кодоны УАГ («амбер»), УАА («охра») и УГА («опал») являются терминаторами (стоп-сигналами) синтеза. Когда считывание генетической информации в мРНК доходит до одного из этих кодонов, дальнейший синтез прекращается и полипептидная цепь отделяется от рибосомы.

В каждой клетке в молекулах ДНК закодирована вся генетическая информация, которая может быть реализована в онтогенезе через биосинтез в виде биохимических процессов, физиологических свойств и морфологических признаков.

Один из важнейших подходов к биохимической генетике – индукция, выделение и изучение мутантов (на примере дрожжей, бактерий). Выход мутантов можно увеличить с применением пенницилина, который препятствует синтезу клеточной стенки у бактерий и воздействует только на активно делящиеся клетки. Если клетки, выжившие после мутагенного воздействия, инкубировать в искусственной среде, прототрофы начнут расти и делиться. Подобные методы существуют и для одноклеточных и нитчатых грибов.

В изучении биохимической природы мутаций можно выделить три уровня:

а) проверка способности мутантов использовать известные или предполагаемые промежуточные продукты метаболического пути синтеза аргинина,

б) изучение накопления или выделения промежуточных продуктов биосинтетического пути в мутантных клетках,

в) точная идентификация нарушения метаболизма путем прямого исследования ферментов биосинтеза.

Например, мутанты, у которых нарушено использование глюкозы, обнаруживают следующим образом: после мутагенной обработки культуру высевают на индикаторную среду, содержащую лактозу, а также красители эозин и метиленовый синий (ЭМС). Колонии, которые могут расщеплять лактозу, окрашиваются красителями в красновато-зеленый цвет, а мутантные клетки не окрашиваются и образуют маленькие белые колонии. Соответствующие мутации можно отнести к одному гену (z) – структурному гену бетта-галактозидазы.

Применение цис-транс-теста к мутациям позволяет провести их генетико-биохимический анализ.

Закономерности цис-транс-теста.

1. Для отбора мутантов обычно используют у них способности выполнять какую-либо функцию – расти на искусственной среде, регулировать синтез какого-либо метаболита. Или (в случае фагов) расти на определенном штамме бактерии-хозяина. Эти признаки свидетельствуют, что данные мутации относятся к рецессивным.

2. Если два мутантных генома, утративших одну и ту же функцию поместить в общую цитоплазму, то конечный фенотип культуры будет мутантным.

3. Если в общую цитоплазму ввести два мутантных генома, у которых нарушены разные функции, то фенотип культуры будет диким.

Применение цис-транс-теста позволяет определить генетическую функциональную единицу, цистрон. Этот термин был предложен в 1957 г. Бензером. Как правило, термины «ген» и «цистрон» синонимичны, и их можно использовать как взаимозаменяемые.

Метод, позволяющий определить последовательность оснований во фрагментах ДНК, разработанный Максамом и Гилбертом в 1977 г. При работе этим методом ДНК расщепляют, удаляя из нее четыре разных основания. Для удаления оснований используют следующие реакции.

а. Реакция с диметилсульфатом в кислой среде. При этом происходит преимущественно удаление гуанина по сравнению с аденином.

б. Реакция с диметилсульфатом в присутствии NaCl. При этом удаляется преимущественно аденин.

в. Реакция с гидразином в присутствии пиперидина. При этом удаляются тимин и цитозин.

г. Реакция с гидразином и пиперидином в присутствии NaCl. В этом случае удаляется только цитозин.

Фрагмент ДНК метят по концам 32Р и обрабатывают в таких условиях, чтобы атаке подверглось только одно из ста оснований. В результате образуется ряд фрагментов, соответствующих скажем, расщеплению по каждому аденину. Полученные фрагменты разделяют по длине и, следовательно, по положению удаленных оснований с помощью гель-электрофореза. Одновременный электрофорез препаратов, полученных при четырех различных воздействиях, позволяет исследователю прочитать последовательность оснований ДНК. Этот метод дает возможность расшифровать последовательности длиной до 100 нуклеотидов; для расшифровки более длинных фрагментов необходимо разрезать исходный фрагмент фрагментами рестрикции, расшифровать образующиеся куски по отдельности и затем построить общую картину.

Общий состав генома любого организма можно изучать, исследуя кинетику реассоциации. При использовании этого метода ДНК нарезают на фрагменты длиной примерно 300 пар оснований и денатурируют нагреванием при 960 С. При понижении температуры комплементарные одноцепочечные фрагменты могут реассоциировать. Кинетику этого процесса прослеживают спектрофотометрически или путем выделения двухцепочечных молекул на гидроксиапатите. Скорость реассоциации зависит от степени повторяемости данной последовательности в образце. Исследования показали, что 30% генома составляют относительно простые последовательности. Остальные 70% генома состоят из уникальных последовательностей.

Гилберт предложил называть последовательности, которые входят в состав зрелой м РНК, экзонами, так как они экспрессируются, а те промежуточные последовательности, которые хотя и транскрибируются, но затем вырезаются из транскрипта до того, как он выходит из ядра, интронами.

Генетика пола

Детерминация пола и механизм его наследования

В ходе эволюции у большинства раздельнополых организмов сформировался механизм детерминации пола, обеспечивающий образование равного количества самцов и самок, что необходимо для нормального самовоспроизведения видов. Детерминация пола может происходить на разных этапах размножения. Различают три основных типа половой детерминации:

1) эпигамный, когда пол особи определяется в процессе онтогенеза. Детерминация пола в данном случае значительно зависит от внешней среды (самцы морского червя живут в матке самки, если личинка оседает на дно, то превращается в самку, а если проникнет в тело самки – в самца);

2) прогамный, когда пол будущего дочернего организма определяется в ходе гаметогенеза у родителей особи (коловратки, тля, кольчецы);

3) сингамный, при котором пол дочерней особи определяется в момент слияния гамет с образованием зиготы. Это наиболее распространенный тип детерминации пола, характерный для всех видов животных.

При прогамном и сингамном типах детерминации пол зависит от определенных половых хромосом.

У самок млекопитающих в диплоидном наборе хромосом выделяют последнюю пару одинаковых по форме половых хромосом, обозначаемых ХХ-хромосомами (гомогаметный пол). Самцы в кариотипе содержат Х- и Y –хромосомы (гетерогаметный пол – два типа гамет). Самцов обычно рождается на несколько процентов больше, чем самок, но в ходе эволюции повышена смертность самцов.

У птиц, пресмыкающихся и бабочек, наоборот, самки имеют гетерогаметный пол - ZW, а самцы – гомогаметный ZZ. У пчел половых хромосом нет, поэтому пол зависит от количества аутосом. В соматических клетках матки и рабочей пчелы содержится 32 аутосомы, а у трутня – 16 аутосом.

У дрозофилы возникновение пола зависит не только от присутствия половых хромосом, но и от соотношения аутосом. Это балансовая теория определения пола К.Бриджеса (1919). Все особи с балансом хромосом (или половым индексом) Х:А=1 – самки, Х:2А=0,5 – самцы. Баланс хромосом от1 до 0,5 определяет промежуточное развитие пола, то есть интерсексуальность. Соотношение 3Х:2А=1,5 ведет к развитию сверхсамок. Х+Y:3А=0,33 определяет развитие сверхсамцов. Гинандроморфы – насекомые у которых одни участки тела женские, а другие – мужские.

Организмы обладают бисексуальностью, то есть способностью при определенных условиях формировать женский или мужской пол. У крупного рогатого скота иногда рождаются двойни. В случае разнополых близнецов бычки развиваются нормально, а телочки в 95% случаев оказываются интерсексами (наружные гениталии женского типа, а внутренние органы – мужского). Таких животных называют фримартинами; они всегда бесплодны. Существует две теории образования фримартинов: гормональная и клеточная. Поскольку мужской гормон тестостерон начинает продуцироваться раньше, то длительное воздействие на женские половые органы приводит к недоразвитию последних. Присутствие Y-хромосомы в кариотипе телок-фримартинов и изменение у них признаков в сторону мужского пола – явное свидетельство ее влияния на половые признаки. Цитогенетический анализ является надежным методом ранней диагностики фримартинизма у телок.

У домашних животных существуют разные формы интерсексуальности, которые объединяются под названием гермафродитизм.

Кроме того, обнаружены отдельные формы, очень сходные с известными синдромами у человека – синдромами Клайнфельтера (ХХY) и Тернера (ХО). У крупного рогатого скота ХХY синдром наблюдали в сочетании с Х-трисомией. Характерными признаками животных были нарушения роста и развития, двухсторонняя гипоплазия семенников с олиго- и некроспермией и другими изменениями. Синдром Тернера характеризуется женским фенотипом с дисгезией гонад и другими генитальными дефектами. Цитологически - отсутствует вторая Х-хромосома. Образование гермафодитов – особей имеющих гонады и (или) половые органы противоположных полов, рассматриваются как результат нарушения мейоза в период развития бластоцисты. Животные с признаками гермафродитизма своевременно должны выделяться в группы откорма.

Диагностику пола интерсексов и гермафродитов впервые определил Барр М. в 1949 г. на основании обнаружения телец Барра или полового хроматина в ядре клеток. Это тельце встречается только в ядрах клеток самок. Количество телец Барра всегда на единицу меньше числа Х-хромосом. Так, если у самок обнаруживают два тельца Барра, то они являются носителями трисомии по Х-хромосоме. Если половой хроматин отсутствует, то у особи женского пола имеется только одна Х-хромосома. Если у самца обнаруживают тельце Барра, Это значит, что у него в кариотипе не одна, а две Х-хромосомы.

Наследственные аномалии животных, сцепленные с полом.

У сельскохозяйственных животных установлено несколько форм врожденных аномалий, обусловленных генами, локализованными в половых хромосомах. Как правило, они имеют рецессивный характер проявления, и при этом поражаются преимущественно особи гетерогаметного пола – у млекопитающих самцы, у птиц – самки. Сцепленные с полом летальные и сублетальные аномалии изменяют численное соотношение полов при рождении или после него вследствие гибели или браковки у млекопитающих самцов, у птиц – самок. Например, установлена такая аномалия, как врожденная деформация передних конечностей в сочетании с анкилозом суставов, изученная у животных черно-пестрой, сычевской и костромской пород, проявляется, как правило, у бычков, родственных между собой, что указывает на сцепленное с полом наследование. У собак обнаружено заболевание геофилией. Явление гемофилии заключается в утрате кровью нормальной способности к свертыванию. Симптомы гемофилии обычно проявляются впервые у щенят в возрасте от шести недель до трех месяцев. В число обычных симптомов входят: хромота (следствие кровоизлияний в суставы), сильная подкожная припухлость и в конечном итоге паралич одной или нескольких конечностей. Небольшие царапины могут оказаться для щенят-гемофиликов смертельными.

Передача через половые хромосомы признаков, сцепленных с Х- и Y-хромосомами, указывает на то, что на особь мужского пола большее влияние оказывает наследственность матери и ее предков, передавших Х-хромосому, которая является носителем генов для ряда признаков. Наследственность же отца, передавшего сыну Y-хромосому, генетически малоактивна.

Проблема регуляции пола у сельскохозяйственных животных

В молочном скотоводстве более желательным является рождение телочек, а в мясном – бычков. В яичном птицеводстве экономически выгодно получать больше курочек, а в мясном – петушков. С тонкорунных баранов настригают вдвое больше шерсти, чем с овец, оленьи панты можно получить только у самца. У тутового шелкопряда самцы дают на 25-30% больше шелка, чем самки, поэтому их преимущество очевидно. Регуляция соотношения полов у млекопитающих может быть достигнута такими путями:

1. Метод кислотно-щелочного анабиоза, который дает изменение соотношения Y:Х=20:80%. Этот метод основан на разной подвижности сперматозоидов. В кислой среде наиболее подвижны Х-спермии, а в щелочной -Y-спермии.

2. Метод разделения спермы на фракции путем электрофореза. Предполагают, что при этом спермии с разными половыми хромосомами отойдут к разным полюсам. При температуре в опыте 25оС на аноде накапливается спермы в соотношении Y:Х=75:25%, а на катоде –Y:Х=20:80%. При снижении температуры в опыте до 10оС результаты были обратными: на аноде накапливалось спермы в соотношении Y:Х=17:83%, а на катоде - Y:Х=83:17%.

3. Изменение pH женских половых путей. Обычно среда влагалища кислая. Однако при половом оргазме матка сокращается, и слизь из канала шейки матки, который имеет щелочную среду, поступает во влагалище и среда становится нейтральной. Если оргазм происходит у самки раньше, чем у самца, и спермии попали в нейтральную среду, то следует ожидать потомков мужского пола. Если оргазм у самца опережает оргазм самки, то спермии попадут во влагалище с кислой средой и следует ожидать потомство женского пола.

4. Центрифугирование спермы перед осеменением. Х-спермии будут на дне центрифужной пробирки, а Y–спермии – сверху.

5. Фракционирование спермиев по количеству ДНК и по их антигенному составу.

6. Учет возраста спариваемых особей. С возрастом родителей заметно снижается рождение самок (их было мало получено и от годовалых животных). При спаривании кур шестимесячного возраста выход самок был низким (27-33%), в потомстве же десятимесячных родителей он составил 47,5%, а двенадцатимесячных – 49,7%.

7. Метод программирования будущих детей относительно менструального цикла(Ф.Бенендо, 1970). Если спермии попадут в половые органы женщин за 4 дня (12-14 день после начала менструации) до овуляции (выхода зрелой яйцеклетки из яичника в матку), то в 84,7% случаев рождаются девочки, а если сразу после овуляции, то в 86,6% случаев рождаются мальчики.

У других видов продуктивных животных используют такое явление как партеногенез. Партеногенез – это развитие зародыша, а потом и организма без оплодотворения. Различают гиногенез и андрогенез. Гиногенез – это развитие зародыша из неоплодотворенной яйцеклетки, характерное для серебристого карася, так как в икринку проникает спермий другого вида; для некоторых пород кур и индеек. Андрогенез – это развитие потомков только за счет ядер спермиев, слитие которых происходит в яйцеклетке с утраченным ядром. Это характерно для тутового шелкопряда, паразитический осы, когда особи обладают только признаками отцовского вида. Разрушение ядер яйцеклетки в таком случае проводят рентгеновскими лучами (Б.Л. Астауров).

Генетические методы раннего распознавания пола.

В птицеводстве используют сцепленную с полом окраску перьев для различения пола у суточных цыплят. Скрещивали золотистых петухов с серебристыми курами. Из яиц вылуплялись желтые цыплята – это курочки, другие зеленовато-белые – это петушки.

Используя явление сцепленного сполом наследования, Пеннет в Англии создал породу кур камбар. Петушки более светлой окраски, чем курочки (пятнистый рисунок). А.С.Серебровский изучил признак полосатости у кур и установил, что он детерминирован геном, локализованным в половой хромосоме. У петушков имелись темные пятна, у курочек – нет. Эти различия обуславливаются доминантным геном В, локализованным в половой хромосоме. Наследственный детерминизм в окраске был найден у гусей – один пол белый, другой серый. Существует метод распознавания цыплят по строению клоаки. У крупных малоплодных животных разработаны методы раннего определения пола, основанные на микрохирургическом получении клеток трофобласта у эмбриона или взятия амниотической жидкости с последующим цитогенетическим анализом состава половых хромосом.

Лекция 8. Передача наследственной информации у бактерий и вирусов. Основы фармакогенетики

Бактерии имеют плотную клеточную оболочку, под которой находится эластичная, тонкая протоплазматическая мембрана. В цитоплазме бактерий есть небольшие образования, так называемые плазмиды (эписомы). Это небольшие кольцевые двуцепочечные молекулы ДНК, которые могут существовать автономно (реплицироваться с помощью ферментов клетки бактерии независимо от основной хромосомы) или входить в состав молекулы ДНК, которая находится в хромосоме бактерии. Термин «плазмиды» предложен Дж. Ледербергом в 1952 г. Маленькие плазмиды включают 10-30 тыс.пар оснований, и в клетке имеется их от 10 до 100 копий. Большие плазмиды содержат до 100 тыс. пар оснований, но в клетке они представлены одной-двумя копиями. Изучены факторы (R-факторы) устойчивости к лекарственным веществам (стрептомицину, тетрациклину, сульфаниламидам). Термин «эписомы» предложен Ф.Жакобом и Э.Вольманом (1958). Есть эписома, которую называют половым фактором F+. Она выполняет функцию обмена генетическим материалом между бактериальными клетками.

Кишечная палочка (Escherichia coli) обладает гаплоидным набором хромосом, является быстрорастущим организмом, который можно культиворовать на синтетической среде. В бактериях происходит обмен генетической информацией, который приводит к возникновению новых рекомбинативных генотипов, однако процессы, которые приводят к такому обмену, существенно отличаются от оплодотворения и мейоза, характерных для высших организмов. Эти процессы называются парасексуальными и включают в себя такие формы, как сексдукция, трансформацияи трансдукция. Парасексуальные процессы – это обмен генетической информацией между клетками разных штаммов бактерий и вирусов.

Сексдукция – это перенесение генетического материала от одной бактерии к другой с помощью полового фактора (F+) при коньюгации. Впервые процесс коньюгации у бактерий обнаружили Дж.Ледеберг и Э.Татум в 1946 г. В 1952 г. Хейс установил неравноценную роль родительских штаммов при коньюгации. Выяснилось, что один штамм является донором (мужским), а другой – реципиентом (женским). F+ - это присутствующий половой фактор, что характерно для мужских клеток бактерий, F- - это отсутствующий половой фактор, что характерно для женских клеток бактерий.

Клетки-доноры обладают половым фактором F+, который является коньюгативной плазмидой и представляет собой циркулярно замкнутую молекулу ДНК. При коньюгации клетки доноры F+ соединяются с клетками-реципиентами F- при помощи коньюгационного мостика – особой протоплазматической трубки, образуемой клеткой F+. При коньюгации фактор F+ обычно не передается, так как располагается в конце хромосомы. С более высокой частотой передаются гены, расположенные около начальной точки хромосомы донора. Затем ДНК донора в гомологичных участках вступает в контакт с ДНК реципиента и в результате кроссинговера, некоторые участки одной цепи ДНК реципиента заменяются фрагментами ДНК донора. При коньюгации половой фактор вместе с фрагментами ДНК иногда переходит в женскую клетку, превращая ее в мужскую и передавая ей свойства, контролируемые фрагментом хромосомы донора. Мостик между коньюгирующими клетками хрупок, и перенос всей хромосомы донора, который при 370С занимает 90 минут редко доходит до конца. При данной температуре перенос происходит с постоянной скоростью. Большая скорость деления бактериальных клеток за короткий промежуток времени, обуславливает их показательное использование в генетических исследованиях.

Трансформация – это процесс передачи наследственной информации от одного штамма бактерий другому вследствие перенесения ДНК. Такое явление впервые обозначил Ф.Гриффитс в 1928 г. на пневмококках. В 1944 году Эвери, Мак-Леод и Мак-Карти осуществили химическую идентификацию трансформирующего начала. Они убивали клетки пневмококков нагреванием, экстрагировали с помощью лизиса в присутствии детергента и после осаждения абсолютным этанолом и депротеинизации хлороформом получали трансформирующее начало в высокоактивной форме. Конечный продукт давал отрицательную реакцию на белок и и РНК и резкоположительную реакцию на ДНК. Трансформирующая активность препарата была устойчива к протеолитическим ферментам и рибонуклеазе, но разрушалась под действием ферментов, расщепляющих ДНК. С помощью этих экспериментов было твердо установлено, что ДНК способна переносить генетическую информацию от одной бактерии к другой.

Трансдукция- Это перенос генов из одной бактериальной клетки в другую при участии определенных бактериофагов. Впервые явление трансдукции установили Н.Д.Циндер и Дж.Ледеберг в 1952 г. По строению бактериофаги – это вирусы, паразитирующие в бактериальных клетках. У бактериофагов ДНК заключена в головке фага. Если фаг вирулентный, то инфицирование этим фагом чувствительной клетки-хозяина приводит к ее лизису и высвобождению фагов-потомков. Фаговые частицы прикрепляются к специфическим участкам бактериальной клеточной стенки с помощью фибрилл отростка. Чехол отростка сокращается, и содержимое головки проникает внутрь бактерии, как бы впрыснутое шприцем. Фаговая ДНК проходит через отросток в бактериальную клетку, подавляя белоксинтезирующие механизмы клетки-хозяина, и заставляет их синтезировать компоненты фага, используя в качестве матрицы фотоспецифические мРНК. Есть и такие фаги, которые, инфицируя клетку, не обязательно вызывают ее лизис. Подобно коньюгации, трансдукция – однонаправленный перенос. Трансдуцированные гены донора включаются в тот участок бактериальной хромосомы, в котором расположены гомологичные гены реципиента. Иногда трансдуцированный фрагмент ДНК не интегрируется, а остается в цитоплазме бактерии; в этом случае он не может делиться, но способен транскрибироваться и транслироваться. Это абортивная трансдукция; она обусловливает гетерозиготность по генам, содержащимся в перенесенном фрагменте, и позволяет исследовать функцию генов и их взаимодействие.

Эксперимент Френкель-Конрата в 1955 г. отчетливо показал, что именно РНК определяет взаимодействие вируса и клетки-хозяина, а также генотип и фенотип вирусного потомства. В 1956 г. Гигер и Шрамм показали, что генетическим материалом ряда вирусов, а в частности вируса табачной мозаики (ВТМ) является одноцепочечная молекула РНК.

Основы фармакогенетики

Фармакогенетика – наука о роли генетических факторов в индивидуальной, видовой, половой и возрастной восприимчивости организмов к лекарственным веществам, метаболизме этих веществ, толерантности, лекарственной зависимости, кумуляции, потенциировании и антагонизме. Фармакогенетика – это новый прикладной междисциплинарный раздел генетики и фармакологии (науки, изучающей действие лекарственных веществ на организм животных и людей).

Фармакогенетика изучает:

- реакции организма на действие лекарственных веществ с учетом генетических особенностей отдельных индивидуумов в рамках возрастных, сезонных, половых, видовых особенностей;

- стремление достижения желаемого эффекта при их применении;

- механизм и степень наследования этих реакций в норме и патологии;

- генетику ферментов, которые превращают (метаболизируют) лекарственные вещества в норме и в случае патологических изменений в ферментной системе;

- разрабатывает способы профилактики патологических медикаментозных реакций и лечения органов с такими отклонениями.

Термин «фармакогенетика» ввел в науку в 1959 г. Вогель, который первым заметил существование генетического контроля над реакциями организма на введение лекарственных веществ.

Генетически обусловленные отличия в реакциях организма на лекарственные вещества зависят:

1. От замедленного метаболизма лекарственных веществ, вследствие чего возникает резкая реакция организма на фармакологические препараты (образование недостаточного количества соответствующих ферментов, или с недостаточной их активностью).

2. От ускоренного метаболизма лекарственных веществ, результатом которого является слабая фармакологическая реакция организма и пониженная лечебная эффективность препаратов.

3. От нарушения нормального взаимодействия между лекарственными веществами и метаболитами, что может приводить к образованию вредных химических соединений и негативной реакции организма.

Также могут возникать нетипичные реакции организма на лекарственные вещества, прямо не связанные с генотипом организма, а являются результатом аллергизации, ослабления защитных механизмов организма. Чаще всего это результат ферментных дефектов (энзимопатий).

Энзимопатии – наследственные нарушения структуры и функции ферментов, метаболизирующих лекарственные вещества. Они возникают в результате мутаций определенных генов и играют важную роль в возникновении негативного действия многих лекарственных веществ. В одном случае действие лекарственных веществ усиливается настолько, что обуславливает нежелательные последствия, а в другом – лекарственные вещества провоцируют обострение хронических заболеваний, которые протекали латентно.

Широкое применение антибиотиков и других лекарств привело к тому, что генетическая резистентность патогенных бактерий возросла до такой степени, при которой часто затруднено лечение инфекционных болезней. В Англии среди изученных штаммов сальмонелл 61% оказался резистентным к одному или более антибиотиков. В этой же стране в 1977 г. 62,6% штаммов E.coly, выделенных от крупного рогатого скота, были резистентными к стрептомицину и 47% - к тетрациклину, а у свиней – соответственно 5,5 и 47,1%.

У скота, павшего от респираторных болезней, выделено более 50% культур пастерелл, устойчивых к сульфаниламидам и стрептомицину, а 75% были нечувствительны к тетрациклину.

На некоторых фермах в Японии во время эпизоотии сальмонеллеза у телят выделяли до 77% устойчивых к хлорамфениколу штаммов сальмонелл, среди которых 85% были также устойчивы к тетрациклину, стрептомицину и сульфаниламидам. Резистентность полностью передавалась последующим поколениям сальмонелл.

Во многих странах повышение резистентности к различным лекарствам обнаружено у гельминтов и клещей. Установлено, что применение одного препарата ведет к возникновению устойчивости клещей к этому препарату в течение 5-10 лет.

Механизм резистентности микроорганизмов против лекарственных веществ.

Резистентность микроорганизмов зависит от образования в бактериальных клетках так называемых плазмид – эписом с R–фактором (способным обеспечить устойчивость бактерий против лекарственных веществ). Плазмиды по коньюгационному мостику могут проникать в другую бактерию, даже другого вида, обусловливая или невосприимчивость к определенным лекарственным веществам, или способность к синтезу колицинов. Колициногены включают гены, которые и обусловливают синтез бактерией особых белковых веществ – колицинов. Однако образовавшиеся метаболиты пагубно воздействуют на организм животного или человека, ухудшая состояние здоровья. Периодическое чередование разных лекарственных веществ (в пределах 2-3 суток), как правило, приводит к полной утрате способности бактериальной клетки к быстрому размножению R-факторов, размножению самой клетки и к ее гибели. Некоторые из плазмид способны встраиваться в хромосому бактерии, и тогда при переходе из одной бактерии в другую они, подобно половому фактору, перетягивают за собой часть, а иногда всю хромосому.

Эффективность введения лекарственных веществ зависит от:

- Пола. Мужской пол имеет меньше активных генов, чем женский, вследствие инертности Y-хромосомы. Например женский пол чувствителен к никотину, стрихнину, снотворному, но резистентен к алкоголю.

- Возраста. Новорожденные более чувствительны к лекарственным веществам, чем взрослые. При внутрибрюшном введении новорожденным крольчатам гексабарбитала 75мг/кг приводит к глубокому сну, а затем к гибели. У 10-дневных крольчат сон 1-2 часа, и гибнут 50%. У 16-дневных крольчат – сон 10-20 минут. Взрослые кроли не засыпают. Такие лекарственные вещества, как ацетилхолин, адреналин, никотин у старых животных вызывают реакцию в 3-10 раз выше, чем у молодых.

- Смены дня и ночи. Так морфин, амфетамин наиболее активны в ночное время, а никотинамид – днем. У мышей токсичность этилового спирта вечером и ночью выше, чем утром и днем. Ритмическая деятельность организма полностью зависит от генетического контроля и действия желез внутренней секреции.

- Факторов внешней среды. Температура, свет, радиационный режим, способ содержания (групповой, одиночно), режим кормления, атмосферное давление… Воздействие рентгеновскими лучами снижает действие лекарственных веществ. Одиночное содержание приводит к увеличению активности ферментов, вследствие чего продолжительность сна значительно уменьшается.

Лекция 9 Ветеринарная селекция. Генетика поведения, ее использование в селекции





Дата публикования: 2014-12-10; Прочитано: 399 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...