Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Механизм элементарного акта. Безбарьерный и безактивационный разряд



Итак, при рассмотрении механизма элементарного электрохимического акта целесообразно различать реакции, идущие с разрывом внутримолекулярных связей, и реакции, в ходе которых происходит лишь перестройка структуры частиц и растворителя с сохранением основных связей, существовавших в исходных частицах. Типичным примером реакций первого типа можно считать одну из наиболее часто встречающихся на практике и наиболее интенсивно изучаемую реакцию выделения водорода

3О+ + 2 е М = Н2 + 2Н2О

или, точнее, отвечающий ей элементарный электрохимический акт

Н3О+ + е М = Надс + Н2О,

в ходе которого происходит разрыв связи Н+ – Н2О и образование связи Н – М. К реакциям второго типа относится, например, перезарядка ионов без изменения их химического состава

Sn4+ + 2 е М = Sn2+,

Fe(CN)63­­ + е М= Fe(CN)64–.

Картину элементарного акта для реакций первого типа дали впервые Гориучи и Поляни (1935), используя метод потенциальных кривых. Обобщённая координата реакции в данном частном случае отождествляется с расстоянием от поверхности электрода или, точнее, с путём, проходимым протоном от его положения равновесия в системе Н+ – Н2О до положения в системе Н – М.

Основное положение теории Гориучи – Поляни заключается в том, что энергия активации стадии разряда – ионизации обусловлена растяжением химических связей в молекулах или ионах реагирующих веществ. Гориучи и Поляни развили свою теорию именно на примере реакции разряда ионов водорода. Элементарный акт этой реакции состоит в том, что один из протонов иона гидроксония переходит на поверхность электрода и, соединяясь с электроном, дает адсорбированный атом водорода

Н3О+ + е = Надс + Н2О.

Ион Н3О+ может подходить к отрицательно заряженной поверхности электрода только до некоторого расстояния, определяемого его эффективным радиусом. Дальнейшее приближение протона к поверхности будет сопряжено с растяжением связи Н+– ОН2 , а потому потребует затраты значительной энергии. Зависимость потенциальной энергии протона в адсорбированном ионе гидроксония от расстояния до электрода должна поэтому иметь вид кривой с минимумом при некотором равновесном расстоянии R = (см. кривую 1 на рис. 41, а). В свою очередь, потенциальная кривая адсорбированного атома также должна проходить через минимум в зависимости от расстояния до электрода (кривая 2 рис. 41, а). Положение минимума при R = на этой кривой соответствует равновесному состоянию связи М – Н.

a б
Рис. 41. Потенциальные кривые для процесса разряда иона водорода по теории Гориучи – Поляни

Как видно из рис. 41, а, равновесные положения в ионе Н3О+ и в состоянии адсорбированного атома разделены энергетическим барьером Uo. Таким образом, элементарный акт разряда в теории Гориучи – Поляни связан с движением протона вначале по кривой 1 до точки пересечения (растяжение связи Н+ – ОН2), а затем вдоль кривой 2 (переход растянутой связи М – Н к своему равновесному состоянию). Координатой реакции здесь является расстояние, перпендикулярное поверхности электрода.

Из рис. 41, а также видно, что Uo – энергия активации реакции разряда при равновесном потенциале – определяется разностью ординат точек А и В

Uo = UA – UB.

При изменении потенциала электрода на величину h потенциальная кривая иона Н3О+ перемещается параллельно самой себе на величину hF в положение 1¢, а потенциальная кривая адсорбированного атома никуда не сместится, так как Надс – частица незаряженная, и ее энергия не изменяется при изменении потенциала электрода. Новая энергия активации реакции разряда равна

U = UA¢ – UB¢.

Из потенциальных диаграмм следует, что энергия активации электрохимических процессов зависит от перенапряжения и для прямой реакции, и для обратной.

Из приведённых соотношений вытекает ряд интересных следствий. При увеличении перенапряжения энергия активации исчезает и процесс становится безактивационным. Дальнейшее увеличение перенапряжения уже не может уменьшить энергию активации, то есть увеличить скорость прямой (катодной) реакции, что эквивалентно a = 0. Это означает, что для обратной (анодной) реакции коэффициент переноса делается равным единице (b = 1). Для процессов с коэффициентом переноса, равным единице, энергия активации совпадает с тепловым эффектом элементарного акта. Эти процессы часто называются безбарьерными.





Дата публикования: 2014-12-11; Прочитано: 897 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...